Formal comments on
Integrated Resource Plan (IRP) 2018

CSIR Energy Centre
Pretoria. 25 October 2018

Jarrad Wright
JWright@csir.co.za

Joanne Calitz
JRCalitz@csir.co.za

Ntombifuthi Ntuli
PNtuli@csir.co.za

Mpeli Rampokanyo
MRampokanyo@csir.co.za

Pam Kamera
PKamera@csir.co.za

Ruan Fourie
RFourie@csir.co.za
Submitted to DoE on 25 October 2018

Word Cloud

(DoE, Draft IRP 2018)
(Design: JG. Wright, using word_cloud, https://github.com/amueller/word_cloud)
Formal comments on Draft IRP 2018

1 Executive Summary
2 Background
3 Draft IRP 2018 scenarios
4 Draft IRP 2018 employment impacts
5 Draft IRP 2018 energy planning risks
6 System services and technical considerations
Formal comments on Draft IRP 2018

<table>
<thead>
<tr>
<th></th>
<th>Sections</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Executive Summary</td>
</tr>
<tr>
<td>2</td>
<td>Background</td>
</tr>
<tr>
<td>3</td>
<td>Draft IRP 2018 scenarios</td>
</tr>
<tr>
<td>4</td>
<td>Draft IRP 2018 employment impacts</td>
</tr>
<tr>
<td>5</td>
<td>Draft IRP 2018 energy planning risks</td>
</tr>
<tr>
<td>6</td>
<td>System services and technical considerations</td>
</tr>
</tbody>
</table>
Key Messages

Draft IRP 2018 is a very different plan to the Draft IRP 2016 and establishes solid principles

VRE (PV and wind) with flexibility\(^1\) confirmed as least-cost energy mix as existing coal fleet decommissions; This energy mix also exhibits the least CO\(_2\) emissions and least water usage

Demand growth impacts the timing of new-build capacity but energy mix remains largely unchanged

New-build coal only post-2030 if CO\(_2\) emissions are not too restrictive and new-build VRE is constrained

New-build nuclear only post-2030 if CO\(_2\) emission are restrictive and new-build VRE is constrained

\(^1\) Natural gas fired peaking and mid-merit capacity considered as a proxy for this.

NG - Natural gas; PV – Solar Photovoltaics; VRE – Variable renewable energy; EAF – Energy Availability Factor; RoCoF – Rate of Change of Frequency
Key Messages

To 2030 - outcomes similar across most scenarios but notable risks; Eskom coal fleet EAF (and decommissioning schedule), completion of new-build coal, stationary storage and DSR

To 2030, in the Recommended Plan, expect net employment increase (as system grows) but net decrease in coal

Post 2030 - key drivers include VRE new build limits, decommissioning, demand growth, stationary storage

Natural gas risk relatively small and can be replaced by appropriate domestic flexibility sources or stationary storage

No system integration issues foreseen pre-2030 but an informed and co-ordinated work program is necessary to sufficiently prepare for post-2030 relatively high VRE penetration levels

1 Natural gas fired peaking and mid-merit capacity considered as a proxy for this.
NG - Natural gas; PV – Solar Photovoltaics; VRE – Variable renewable energy; EAF – Energy Availability Factor; RoCoF – Rate of Change of Frequency
At a glance

Previous CSIR contributions have notably impacted and are mentioned throughout the Draft IRP 2018

- Demand forecast: CSIR (Built Environment) provide this as an input to DoE

- Principles raised by CSIR comments on Draft IRP 2016 have been explicitly considered

- These were: New-build limits removed (IRP1), RE costs aligned with REIPPPP, least-cost Base Case established

CSIR have engaged with key stakeholders in the 60 day public consultation period

- Bilateral engagements: DoE, SALGA, EIUG, Nersa, Eskom

- Attendance at IRP workshops: EE Publishers, FFF, NIASA (requested feedback)

- Tentative: Parliament Portfolio Committee (Energy)
Draft IRP 2018 scenario summaries – this is a very different plan to the Draft IRP 2016 and establishes solid principles

• Least-cost confirmed as combination of PV, wind and flexible capacity\(^1\) as coal decommissions – also exhibits lowest CO\(_2\) emissions and water usage by 2050

• Technology new-build limits (PV, wind) mean post-2030 deployment is constrained with new-build coal and gas replacing it (assuming less restrictive CO\(_2\) constraints)

• Higher NG price means less NG usage (notable capacity for system adequacy) and increased new-build coal

• More strict CO\(_2\) emissions (Carbon Budget) with RE new-build limits means less new-build coal and deployment of nuclear instead

• Higher NG price and more strict CO\(_2\) emissions (Carbon Budget) with RE new-build limits means less NG and coal, increased nuclear instead

• Higher/Lower demand forecast means same mix of new-build of PV, wind and flexibility\(^1\) just earlier/later

\(^1\) Natural gas fired peaking and mid-merit capacity considered as a proxy for this; NG - Natural gas; PV – Solar Photovoltaics
Energy mix by 2030 similar across scenarios as coal dominates, IRP1 is ≈R10bn/yr cheaper than next best IRP3, IRP7 lowest CO$_2$ emissions

2030

Energy Mix in 2030

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Coal (TWh)</th>
<th>Nuclear (TWh)</th>
<th>Gas - CCGT (TWh)</th>
<th>Peaking (TWh)</th>
<th>Wind (TWh)</th>
<th>Solar PV (TWh)</th>
<th>Biomass/-gas (TWh)</th>
<th>Other Storage (TWh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IRP1</td>
<td>202 (64%)</td>
<td>15</td>
<td>14</td>
<td>2</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IRP3</td>
<td>197 (63%)</td>
<td>158</td>
<td>13</td>
<td>44</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IRP5</td>
<td>199 (63%)</td>
<td>151</td>
<td>14</td>
<td>44</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IRP6</td>
<td>199 (63%)</td>
<td>151</td>
<td>14</td>
<td>44</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IRP7</td>
<td>192 (61%)</td>
<td>150</td>
<td>26</td>
<td>44</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rec.</td>
<td>206 (64%)</td>
<td>155</td>
<td>28</td>
<td>35</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Demand: 313 TWh

Cost in 2030

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Total system cost(^1) (R-billion/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IRP1</td>
<td>360</td>
</tr>
<tr>
<td>IRP3</td>
<td>361</td>
</tr>
<tr>
<td>IRP5</td>
<td>367</td>
</tr>
<tr>
<td>IRP6</td>
<td>362</td>
</tr>
<tr>
<td>IRP7</td>
<td>373</td>
</tr>
<tr>
<td>Rec.</td>
<td>375</td>
</tr>
</tbody>
</table>

Environment in 2030

<table>
<thead>
<tr>
<th>Scenario</th>
<th>CO$_2$ emissions (Mt/yr)</th>
<th>Water usage (billion-litres/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IRP1</td>
<td>217</td>
<td>199</td>
</tr>
<tr>
<td>IRP3</td>
<td>215</td>
<td>199</td>
</tr>
<tr>
<td>IRP5</td>
<td>213</td>
<td>198</td>
</tr>
<tr>
<td>IRP6</td>
<td>215</td>
<td>199</td>
</tr>
<tr>
<td>IRP7</td>
<td>207</td>
<td>191</td>
</tr>
<tr>
<td>Rec.</td>
<td>215</td>
<td>199</td>
</tr>
</tbody>
</table>

Sources: DoE Draft IRP 2018; Eskom on Tx, Dx costs; CSIR analysis; flaticon.com
Least-cost mix confirmed as new-build solar PV, wind and flexible capacity (NG) - \(\approx R15-55 \text{ bn/yr}\) cheaper than alternative scenarios

Energy Mix in 2040

| Sources: DoE Draft IRP 2018; Eskom on Tx, Dx costs; CSIR analysis; flaticon.com |

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>IRP1</td>
<td>107 (30%)</td>
<td>129</td>
<td>2</td>
<td>54</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IRP3</td>
<td>106 (30%)</td>
<td>151</td>
<td>14</td>
<td>29</td>
<td>90</td>
<td>2</td>
<td>47</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IRP5</td>
<td>104 (29%)</td>
<td>151</td>
<td>11</td>
<td>29</td>
<td>89</td>
<td>2</td>
<td>47</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IRP6</td>
<td>97 (27%)</td>
<td>29</td>
<td>33</td>
<td>47</td>
<td>90</td>
<td>2</td>
<td>47</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IRP7</td>
<td>99 (28%)</td>
<td>29</td>
<td>43</td>
<td>12</td>
<td>29</td>
<td>90</td>
<td>47</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rec.</td>
<td>107 (30%)</td>
<td>151</td>
<td>14</td>
<td>29</td>
<td>89</td>
<td>2</td>
<td>47</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cost in 2040

- Total system cost\(^1\) (R-billion/yr)
 - IRP1: 411
 - IRP3: 466
 - IRP5: 473
 - IRP6: 477
 - IRP7: 494

Environment in 2040

- CO\(_2\) emissions (Mt/yr)
 - IRP1: 123
 - IRP3: 153
 - IRP5: 168
 - IRP6: 116
 - IRP7: 119

- Water usage (billion-litres/yr)
 - IRP1: 59
 - IRP3: 66
 - IRP5: 70
 - IRP6: 56
 - IRP7: 58

Sources:
- DoE Draft IRP 2018
- Eskom on Tx, Dx costs
- CSIR analysis
- flaticon.com
By 2050 - Least-cost mix is 70% solar PV and wind, ≈R30-60 bn/yr cheaper than alternatives, least CO\textsubscript{2} emissions and least water usage

2050

Energy Mix in 2050

<table>
<thead>
<tr>
<th>IRP</th>
<th>Nuclear</th>
<th>Coal (New)</th>
<th>Gas - CCGT</th>
<th>Peaking</th>
<th>Hydro+PS</th>
<th>Wind</th>
<th>Solar PV</th>
<th>Other Storage</th>
<th>Cost (R-billion/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IRP1</td>
<td>68 (17%)</td>
<td>29</td>
<td>17</td>
<td>31</td>
<td>164</td>
<td>78</td>
<td></td>
<td></td>
<td>529</td>
</tr>
<tr>
<td>IRP3</td>
<td>66 (17%)</td>
<td>31</td>
<td>13</td>
<td>8</td>
<td>110</td>
<td>63</td>
<td></td>
<td></td>
<td>560</td>
</tr>
<tr>
<td>IRP5</td>
<td>64 (16%)</td>
<td>80 (20%)</td>
<td>13</td>
<td>8</td>
<td>107</td>
<td>64</td>
<td></td>
<td></td>
<td>564</td>
</tr>
<tr>
<td>IRP6</td>
<td>57 (15%)</td>
<td>55</td>
<td>13</td>
<td>2</td>
<td>106</td>
<td>67</td>
<td></td>
<td></td>
<td>580</td>
</tr>
<tr>
<td>IRP7</td>
<td>58 (15%)</td>
<td>76</td>
<td>17</td>
<td>3</td>
<td>106</td>
<td>64</td>
<td></td>
<td></td>
<td>591</td>
</tr>
</tbody>
</table>

Cost in 2050

- Total system cost\(^1\) (R-billion/yr)
 - IRP1: 529
 - IRP3: 560
 - IRP5: 564
 - IRP6: 580
 - IRP7: 591

Environment in 2050

<table>
<thead>
<tr>
<th>IRP</th>
<th>CO\textsubscript{2} emissions (Mt/yr)</th>
<th>Water usage (billion-litres/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IRP1</td>
<td>82</td>
<td>36</td>
</tr>
<tr>
<td>IRP3</td>
<td>160</td>
<td>54</td>
</tr>
<tr>
<td>IRP5</td>
<td>178</td>
<td>59</td>
</tr>
<tr>
<td>IRP6</td>
<td>92</td>
<td>36</td>
</tr>
<tr>
<td>IRP7</td>
<td>90</td>
<td>38</td>
</tr>
</tbody>
</table>

Sources: DoE Draft IRP 2018; Eskom on Tx, Dx costs; CSIR analysis; flaticon.com
CO2 emissions trajectories for PPD Moderate never binding (only CB) while water use declines as expected as coal fleet decommissions

Scenarios from Draft IRP 2018

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2015 - 2050</td>
<td>2015 - 2050</td>
<td>2750 Mt</td>
<td>> 2750 Mt</td>
</tr>
<tr>
<td>2015 - 2020</td>
<td>2015 - 2020</td>
<td>1800 Mt</td>
<td>2720 Mt</td>
</tr>
<tr>
<td>2025 - 2030</td>
<td>2025 - 2030</td>
<td>920 Mt</td>
<td>2325 Mt</td>
</tr>
<tr>
<td>2035 - 2040</td>
<td>2035 - 2040</td>
<td>210</td>
<td></td>
</tr>
<tr>
<td>2045 - 2050</td>
<td>2045 - 2050</td>
<td>178</td>
<td></td>
</tr>
<tr>
<td>2050</td>
<td>2050</td>
<td>160</td>
<td></td>
</tr>
</tbody>
</table>

Legend:
- IRP1
- IRP3
- IRP5
- IRP6
- IRP7
- IRP2
- IRP4
- PPD (Moderate)
At a glance

Jobs impact of Recommended Plan – reduced role of coal whilst growth in other sectors is expected

- If the Recommended Plan is implemented, there is an employment reduction expected in coal pre-2030
- Overall jobs grow as the power system grows – in solar PV, wind and gas sectors
- This transition needs sufficient preparation – our comments attempt to assist to quantify effects
Net reduction of jobs in coal of ≈100k but net gain overall as gas grows to ≈55k jobs towards 2030, RE contributes up to ≈110k by 2030

Sources: Draft IRP 2018; CSIR Energy Centre analysis
Note: Job potential includes direct, indirect and induced jobs; Nuclear is estimated based on existing experience at Koeberg (KPMG, 2017)
At a glance

Key energy planning risks – Existing fleet low EAF, stationary storage, DSR, further RE learning

- Existing fleet Low EAF: Earlier new-build (2023), outcomes return to IRP1 if low demand and low coal fleet performance
- Storage: Decreasing stationary storage costs (batteries) results in deployment pre-2030, less NG usage and increased solar PV
- DSR: A more responsive demand-side test via electric water heating and EVs delays some capacity investment and deploys slightly more solar PV
- Further RE learning: Increased solar PV and wind post-2030 with timing pre-2030 unchanged, no import hydro
- A risk adjusted scenario: Combining storage, DSR and further RE learning results in increased new-build wind, PV, storage and further lower NG use

EAF – Energy Availability Factor; DSR – Demand Side Response; Evs – Electric Vehicles
Sources: Eskom; Tesla; BNEF; CSIR
Draft IRP 2018 (IRP1) - Least-cost deploys considerable wind, solar PV and NG capacity to 2030 and beyond as the coal fleet decommissions

Installed capacity and electricity supplied from 2016 to 2050 as planned in the Draft IRP 2018

Installed capacity

<table>
<thead>
<tr>
<th>Total installed capacity (net) [GW]</th>
</tr>
</thead>
</table>

Energy mix

<table>
<thead>
<tr>
<th>Energy production [TWh/yr]</th>
</tr>
</thead>
</table>

Sources: Draft IRP 2018. CSIR Energy Centre analysis
Draft IRP 2018 IRP1 with storage, DSR and lower RE costs results in increased new-build wind, solar PV, storage and less NG

Installed capacity and electricity supplied from 2016 to 2050 for IRP1 with storage, DSR and higher RE cost reductions

Notes: NG = Natural gas
Sources: Draft IRP 2018. CSIR Energy Centre analysis
Risk-adjusted scenario with Low EAF requires earlier new-build around 2023 too and increased absolute levels of new-build by 2030

Installed capacity and electricity supplied from 2016 to 2050 for Risk-adjusted scenario with low coal fleet EAF

Installed capacity

Energy mix

Electricity production

First new-builds:
- **PV (2023)**: 0.4 GW
- **Wind (2023)**: 0.2 GW
- **OCGT (2023)**: 1.9 GW

Sources: Draft IRP 2018, CSIR Energy Centre analysis
At a glance

Descriptive inputs/comments – new-build limits, NG import risk and embedded generation

• Technology new-build limits: Still unjustified, constant as power system grows, misaligned with international experience today

• Coal capacity: Investigations reveal that older existing coal capacity could be decommissioned earlier, parts of under construction capacity could be replaced by alternatives and it is not economically optimal to build new coal

• Natural gas import risk: Small role in energy mix (up to 5% pre-2030, 15% by 2050) - can be mitigated by range of domestic options (as well as stationary storage if costs decline)

• Embedded generation: Planning for this is not yet explicit and will need to change (implicit as negative demand)

• Demand profile will change further as different sectors grow, use energy differently and deploy EG for self-use
System services and technical considerations

• System adequacy consistent across all scenarios i.e. reserve requirements included

• System non-synchronous penetration: No barriers pre-2030. Only above 25% from 2028 and 37% by 2030 for 10% of the time but at above 80% by 2050 i.e. system integration focus becomes important post-2030

• A critical indicator (inertia): No barriers pre-2030. Post-2030 worst case mitigating solution cost is ≈1% of total system cost

• Evolution of other system services need to be investigated for post-2030 transition expected (reactive power and voltage control, system strength)

• Variable resource forecasting will become more important - SO should be equipped will relevant tools and skills
Improvements for future IRPs

<table>
<thead>
<tr>
<th>Suggestion</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Need to have transparency in input assumptions, model and outcomes</td>
<td>comprehensively and consistently published</td>
</tr>
<tr>
<td>Investigate and establish the need for annual technology new-build limits;</td>
<td>Remove annual new-build limits until further investigations establish the need for them</td>
</tr>
<tr>
<td>Optimise the existing coal fleet while remaining cognisant of opportunity</td>
<td>cost of capital expenditure on older assets (retrofitting for improved reliability, efficiency and flexibility)</td>
</tr>
<tr>
<td>Inclusion of economic impacts of scenarios. At the very least – employment</td>
<td>impacts</td>
</tr>
<tr>
<td>Improved approaches to better understanding demand (sector shifts, load</td>
<td>profile shape, price elasticity of demand</td>
</tr>
<tr>
<td>Better understanding the cost trajectory of all technologies for</td>
<td>domestic application on a periodic basis</td>
</tr>
<tr>
<td>Develop and implement an integrated program of work on long-term system</td>
<td>integration topics i.e. stability, system strength, reactive power/voltage control (CSIR already initiated CIGRE WG including Eskom and international SOs)</td>
</tr>
<tr>
<td>Focussed consideration and investigation into domestic flexibility options</td>
<td></td>
</tr>
</tbody>
</table>
Going forward – Recommendations

Long-term – structural and strategic

- Formally establishing a set of links/triggers between IRP and MTS AO processes (or equivalent)
 Periodic updating of the IRP should be prioritised to address dynamic planning environment

- Further understanding just transition to address labour and socio-economic impacts in the energy sector

- Integrating national and local level energy planning for improved co-ordination and leveraging of opportunities

- Sector-coupling opportunities across the full energy sector (not just electricity)

- Investigate approaches to include geospatial component of IRP – supply/network/demand (co-optimisation)

- Further investigations into impacts/opportunities of new/emerging technologies e.g. stationary storage, EVs, DSR
Formal comments on Draft IRP 2018

1 Executive Summary

2 Background

3 Draft IRP 2018 scenarios

4 Draft IRP 2018 employment impacts

5 Draft IRP 2018 energy planning risks

6 System services and technical considerations
Integrated Resource Plan (IRP): Process for power generation capacity expansion in South Africa

Inputs
1) Demand Forecast
2) Existing Supply Forecast:
 - Plants under construction
 - Preferred bidders
 - Decommissioning
 - Plant performance
3) New Supply Options:
 - Technology costs
 assumptions
 - Technology technical characteristics
4) Constraints:
 - CO₂ limits
 - Security/adequacy of supply level

IRP modelling framework (PLEXOS®)
- LT¹ techno-economic least-cost optimisation
- MT/ST² production cost testing system adequacy (security of supply)

Output
- Per scenario:
 - Total system costs
 - Capacity expansion (GW)
 - Energy share (TWh)
 - CO₂ emissions
 - Water usage
 - Jobs in the electricity sector
- After policy adjustment:
 - Final “IRP” for promulgation
 - Key questions answered:
 - What to build (MW)?
 - When to build it (timing)?

Procurement
- (competitive tender e.g. REIPPPP, coal IPPPP)

Outcomes
- Preferred bidders
- MW allocation
- Technology costs actuals (Ø IPP tariffs)

1 LT = Long-term
2 MT/ST = Medium-term/Short-term

Planning / simulation world

Actuals / real world
The IRP currently optimises for the dominant generation costs, system reserves (adequacy) and shallow grid cost components of total system cost.

Optimised in PLEXOS model
- Generation (Gx)
- Tx network (shallow)
- System services (reserves)
- Tx network (deep)
- System services (other)
- Distribution network (Dx)
- Other (metering, billing, customer services, overheads)

Not optimised in PLEXOS modelling framework
- Not considered
- Partially considered previously (quantified for system inertia)
- Not considered
- Not considered

Costs included in optimisation model:
- CAPEX (plant level)
- FOM¹
- VOM²
- Fuel
- Shallow grid connection costs

Costs excluded in optimisation model:
- Gx: Externalities e.g. CO₂ emissions costs
- Gx: Decommissioning costs
- Gx: Waste management and/or rehabilitation
- Gx: Major mid-life overhaul
- Tx: Deep costs
- Other system services
- Dx: Distribution network costs
- Other costs

¹ FOM = Fixed Operations and Maintenance costs; ² VOM = Variable Operations and Maintenance costs; ³ Typically referred to as Ancillary Services includes services to ensure frequency stability, transient stability, provide reactive power/voltage control, ensure black start capability and system operator costs.
IRP process as described in the Department of Energy’s Draft IRP 2016 document: least-cost Base Case is derived from technical planning facts

<table>
<thead>
<tr>
<th>Case</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base Case</td>
<td>Base</td>
</tr>
<tr>
<td>Scenario 1</td>
<td>Base + Rxx bn/yr</td>
</tr>
<tr>
<td>Scenario 2</td>
<td>Base + Ryy bn/yr</td>
</tr>
<tr>
<td>Scenario 3</td>
<td>Base + Rzz bn/yr</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

1. Public consultation on costed scenarios
2. Policy adjustment of Base Case
3. Final IRP for approval and gazetting
Reminder: IRP 2010 planned the electricity mix until 2030
Installed capacity and electricity supplied from 2010 to 2030 as planned in the IRP 2010

Installed capacity

<table>
<thead>
<tr>
<th>Year</th>
<th>Total installed net capacity [GW]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>43.0</td>
</tr>
<tr>
<td>2020</td>
<td>62.7</td>
</tr>
<tr>
<td>2025</td>
<td>73.6</td>
</tr>
<tr>
<td>2030</td>
<td>86.6</td>
</tr>
</tbody>
</table>

Energy mix

<table>
<thead>
<tr>
<th>Year</th>
<th>Electricity supplied [TWh]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>259</td>
</tr>
<tr>
<td>2020</td>
<td>343</td>
</tr>
<tr>
<td>2025</td>
<td>392</td>
</tr>
<tr>
<td>2030</td>
<td>441</td>
</tr>
</tbody>
</table>

Note: Installed capacity and electricity supplied excludes pumped storage; Renewables include solar PV, CSP, wind, biomass, biogas, landfill and hydro (includes imports).

Sources: DoE IRP 2010-2030; CSIR Energy Centre analysis
Draft IRP 2016 Base Case planned until 2050
Installed capacity and electricity supplied from 2016 to 2050 as planned in the Draft IRP 2016 Base Case

Installed capacity

<table>
<thead>
<tr>
<th>Year</th>
<th>Coal (new)</th>
<th>Coal (total)</th>
<th>Gas</th>
<th>Hydro+PS</th>
<th>Nuclear (new)</th>
<th>Nuclear</th>
<th>Other storage</th>
<th>Other</th>
<th>Renewable Energy</th>
<th>Wind</th>
<th>Peaking</th>
</tr>
</thead>
<tbody>
<tr>
<td>2016</td>
<td>36.8</td>
<td></td>
<td>7.5</td>
<td>11.1</td>
<td>1.9</td>
<td>0.2</td>
<td>0.4</td>
<td>0.3</td>
<td></td>
<td>5.3</td>
<td>0.4</td>
</tr>
<tr>
<td>2030</td>
<td>32.6</td>
<td></td>
<td>7.3</td>
<td>8.9</td>
<td>0.5</td>
<td>1.1</td>
<td>0.7</td>
<td>1.3</td>
<td></td>
<td>1.1</td>
<td>0.0</td>
</tr>
<tr>
<td>2040</td>
<td>14.3</td>
<td></td>
<td>16.8</td>
<td>21.3</td>
<td>210.7</td>
<td>0.7</td>
<td>0.0</td>
<td>12.8</td>
<td></td>
<td>6.1</td>
<td>0.0</td>
</tr>
<tr>
<td>2050</td>
<td>10.2</td>
<td></td>
<td>15.8</td>
<td>30.4</td>
<td>15.5</td>
<td>0.5</td>
<td>0.0</td>
<td>13.8</td>
<td></td>
<td>3.4</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Energy mix

<table>
<thead>
<tr>
<th>Year</th>
<th>Coal (new)</th>
<th>Coal (total)</th>
<th>Gas</th>
<th>Hydro+PS</th>
<th>Nuclear (new)</th>
<th>Nuclear</th>
<th>Other storage</th>
<th>Other</th>
<th>Renewable Energy</th>
<th>Wind</th>
<th>Peaking</th>
</tr>
</thead>
<tbody>
<tr>
<td>2016</td>
<td>246</td>
<td></td>
<td></td>
<td>200</td>
<td>15</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td></td>
<td>34</td>
<td>0</td>
</tr>
<tr>
<td>2030</td>
<td>203</td>
<td></td>
<td></td>
<td>203</td>
<td>15</td>
<td>0</td>
<td>2</td>
<td>18</td>
<td></td>
<td>34</td>
<td>0</td>
</tr>
<tr>
<td>2040</td>
<td>117</td>
<td></td>
<td></td>
<td>117</td>
<td>15</td>
<td>0</td>
<td>1</td>
<td>15</td>
<td></td>
<td>34</td>
<td>0</td>
</tr>
<tr>
<td>2050</td>
<td>72</td>
<td></td>
<td></td>
<td>101</td>
<td>28</td>
<td>0</td>
<td>5</td>
<td>20</td>
<td></td>
<td>34</td>
<td>0</td>
</tr>
</tbody>
</table>

Note: Installed capacity and electricity supplied includes pumped storage; Renewables include solar PV, CSP, wind, biomass, biogas, landfill and hydro (includes imports). Sources: DoE Draft IRP 2016; CSIR Energy Centre analysis

Submitted to DoE on 25 October 2018
Formal comments on Draft IRP 2018

1 Executive Summary
2 Background
3 Draft IRP 2018 scenarios
4 Draft IRP 2018 employment impacts
5 Draft IRP 2018 energy planning risks
6 System services and technical considerations
A range of scenarios have been assessed as part of the Draft IRP 2018 with key parameter changes

<table>
<thead>
<tr>
<th>Parameter</th>
<th>IRP1</th>
<th>IRP2</th>
<th>IRP3</th>
<th>IRP4</th>
<th>IRP5</th>
<th>IRP6</th>
<th>IRP7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demand forecast</td>
<td>Median</td>
<td>Hi</td>
<td>Median</td>
<td>Lower</td>
<td>Median</td>
<td>Median</td>
<td>Median</td>
</tr>
<tr>
<td>CO\textsubscript{2} mitigation</td>
<td>PPD</td>
<td>PPD</td>
<td>PPD</td>
<td>PPD</td>
<td>PPD</td>
<td>CB</td>
<td>CB</td>
</tr>
<tr>
<td>Annual new-build limit (RE)</td>
<td>-</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Tx collector station costs</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Const. - Constant, Market - Natural gas linked to IEA expected market price
PPD - Peak Plateau Decline, CB - Carbon Budget
Draft IRP 2018 (IRP1) - Least-cost deploys considerable wind, solar PV and NG capacity to 2030 and beyond as the coal fleet decommissions

Installed capacity and electricity supplied from 2016 to 2050 as planned in the Draft IRP 2018

Submitted to DoE on 25 October 2018

Sources: Draft IRP 2018. CSIR Energy Centre analysis
Draft IRP 2018 (IRP3) – RE new-build limits mean post-2030 deployment of solar PV and wind is constrained with new-build coal and gas replacing it.

Installed capacity and electricity supplied from 2016 to 2050 as planned in the Draft IRP 2018.

Sources: Draft IRP 2018. CSIR Energy Centre analysis.
Draft IRP 2018 (IRP5) – Market linked NG price means in less NG usage, notable capacity for system adequacy and increased new-build coal

Installed capacity and electricity supplied from 2016 to 2050 as planned in the Draft IRP 2018

Sources: Draft IRP 2018. CSIR Energy Centre analysis
Draft IRP 2018 (IRP6) – Carbon Budget limits new-build coal capacity and deploys new-build nuclear capacity instead

Installed capacity and electricity supplied from 2016 to 2050 as planned in the Draft IRP 2018

Installed capacity

Total installed capacity (net) [GW]

<table>
<thead>
<tr>
<th>Year</th>
<th>Total installed capacity (net) [GW]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2016</td>
<td>52</td>
</tr>
<tr>
<td>2020</td>
<td>58</td>
</tr>
<tr>
<td>2030</td>
<td>77</td>
</tr>
<tr>
<td>2040</td>
<td>103</td>
</tr>
<tr>
<td>2050</td>
<td>125</td>
</tr>
</tbody>
</table>

Energy mix

Electricity production [TWh/yr]

<table>
<thead>
<tr>
<th>Year</th>
<th>Electricity production [TWh/yr]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2016</td>
<td>245</td>
</tr>
<tr>
<td>2020</td>
<td>264</td>
</tr>
<tr>
<td>2030</td>
<td>313</td>
</tr>
<tr>
<td>2040</td>
<td>353</td>
</tr>
<tr>
<td>2050</td>
<td>391</td>
</tr>
</tbody>
</table>

Sources: Draft IRP 2018. CSIR Energy Centre analysis
Draft IRP 2018 (IRP7) – Market linked NG price & Carbon Budget combines IRP 5&6 meaning less NG and coal capacity, increased nuclear new-build

Installed capacity and electricity supplied from 2016 to 2050 as planned in the Draft IRP 2018

Installed capacity

<table>
<thead>
<tr>
<th>Total installed capacity (net) [GW]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2016</td>
</tr>
<tr>
<td>-----------------</td>
</tr>
<tr>
<td>DR</td>
</tr>
<tr>
<td>Other Storage</td>
</tr>
<tr>
<td>Biomass/gas</td>
</tr>
<tr>
<td>Peaking</td>
</tr>
</tbody>
</table>

| Energy mix |

<table>
<thead>
<tr>
<th>Electricity production [TWh/yr]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2016</td>
</tr>
<tr>
<td>-----------------</td>
</tr>
<tr>
<td>DR</td>
</tr>
<tr>
<td>Other Storage</td>
</tr>
<tr>
<td>Biomass/gas</td>
</tr>
<tr>
<td>Peaking</td>
</tr>
</tbody>
</table>

Sources: Draft IRP 2018. CSIR Energy Centre analysis
Draft IRP 2018 (IRP2) – Upper Demand forecast with similar outcomes to IRP3 just with earlier first new-build and more new-build overall

Installed capacity and electricity supplied from 2016 to 2050 as planned in the Draft IRP 2018

Installed capacity

<table>
<thead>
<tr>
<th>Year</th>
<th>Total installed capacity (net) [GW]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2016</td>
<td>52</td>
</tr>
<tr>
<td>2020</td>
<td>58</td>
</tr>
<tr>
<td>2030</td>
<td>79</td>
</tr>
<tr>
<td>2040</td>
<td>108</td>
</tr>
<tr>
<td>2050</td>
<td>130</td>
</tr>
</tbody>
</table>

Energy mix

<table>
<thead>
<tr>
<th>Year</th>
<th>Electricity production [TWh/yr]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2016</td>
<td>245</td>
</tr>
<tr>
<td>2020</td>
<td>266</td>
</tr>
<tr>
<td>2030</td>
<td>321</td>
</tr>
<tr>
<td>2040</td>
<td>378</td>
</tr>
<tr>
<td>2050</td>
<td>428</td>
</tr>
</tbody>
</table>

Sources: Draft IRP 2018. CSIR Energy Centre analysis
Draft IRP 2018 (IRP4) – Lower Demand forecast with similar outcomes to IRP3 just with later first new-build and less new-build overall

Installed capacity and electricity supplied from 2016 to 2050 as planned in the Draft IRP 2018

Sources: Draft IRP 2018, CSIR Energy Centre analysis
Draft IRP 2018 (Recommended Plan) includes RE new-build limits and policy adjustment for new-build coal and imported hydro

Installed capacity and electricity supplied from 2016 to 2030 as planned in the Draft IRP 2018.

Installed capacity

Energy mix

Electricity production [TWh/yr]

```
<table>
<thead>
<tr>
<th>Year</th>
<th>DR</th>
<th>CSP</th>
<th>Gas - CGE</th>
<th>Gas - CGT</th>
<th>Coal</th>
<th>Coal (New)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2016</td>
<td>5</td>
<td>1.5</td>
<td>37.6</td>
<td>1.9</td>
<td>20</td>
<td>51.9</td>
</tr>
<tr>
<td>2017</td>
<td>5.1</td>
<td>1.9</td>
<td>37.6</td>
<td>1.9</td>
<td>20</td>
<td>57.8</td>
</tr>
<tr>
<td>2018</td>
<td>5.1</td>
<td>1.9</td>
<td>37.6</td>
<td>1.9</td>
<td>20</td>
<td>61.8</td>
</tr>
<tr>
<td>2019</td>
<td>5.3</td>
<td>1.9</td>
<td>37.6</td>
<td>1.9</td>
<td>20</td>
<td>63.3</td>
</tr>
<tr>
<td>2020</td>
<td>5.3</td>
<td>1.9</td>
<td>37.6</td>
<td>1.9</td>
<td>20</td>
<td>61.8</td>
</tr>
<tr>
<td>2021</td>
<td>5.3</td>
<td>1.9</td>
<td>37.6</td>
<td>1.9</td>
<td>20</td>
<td>61.8</td>
</tr>
<tr>
<td>2022</td>
<td>5.3</td>
<td>1.9</td>
<td>37.6</td>
<td>1.9</td>
<td>20</td>
<td>61.8</td>
</tr>
<tr>
<td>2023</td>
<td>5.3</td>
<td>1.9</td>
<td>37.6</td>
<td>1.9</td>
<td>20</td>
<td>61.8</td>
</tr>
<tr>
<td>2024</td>
<td>5.3</td>
<td>1.9</td>
<td>37.6</td>
<td>1.9</td>
<td>20</td>
<td>61.8</td>
</tr>
<tr>
<td>2025</td>
<td>5.3</td>
<td>1.9</td>
<td>37.6</td>
<td>1.9</td>
<td>20</td>
<td>61.8</td>
</tr>
<tr>
<td>2026</td>
<td>5.3</td>
<td>1.9</td>
<td>37.6</td>
<td>1.9</td>
<td>20</td>
<td>61.8</td>
</tr>
<tr>
<td>2027</td>
<td>5.3</td>
<td>1.9</td>
<td>37.6</td>
<td>1.9</td>
<td>20</td>
<td>61.8</td>
</tr>
<tr>
<td>2028</td>
<td>5.3</td>
<td>1.9</td>
<td>37.6</td>
<td>1.9</td>
<td>20</td>
<td>61.8</td>
</tr>
<tr>
<td>2029</td>
<td>5.3</td>
<td>1.9</td>
<td>37.6</td>
<td>1.9</td>
<td>20</td>
<td>61.8</td>
</tr>
<tr>
<td>2030</td>
<td>5.3</td>
<td>1.9</td>
<td>37.6</td>
<td>1.9</td>
<td>20</td>
<td>61.8</td>
</tr>
</tbody>
</table>

Sources: Draft IRP 2018. CSIR Energy Centre analysis

**First new-builds:**
- Coal (2023): 1.0 GW
- PV (2025): 0.7 GW
- Wind (2025): 0.2 GW
- CC-GE (2026): 2.3 GW

Total installed capacity (net) [GW]

- 2016: 51.9 GW
- 2017: 57.8 GW
- 2018: 61.8 GW
- 2019: 63.3 GW
- 2020: 61.8 GW
- 2021: 61.8 GW
- 2022: 61.8 GW
- 2023: 61.8 GW
- 2024: 61.8 GW
- 2025: 61.8 GW
- 2026: 61.8 GW
- 2027: 61.8 GW
- 2028: 61.8 GW
- 2029: 61.8 GW
- 2030: 61.8 GW

Sources: Draft IRP 2018. CSIR Energy Centre analysis
CO2 emissions trajectories for PPD Moderate never binding (only CB) while water use declines as expected as coal fleet decommissions

Scenarios from Draft IRP 2018
Average tariff (without CO₂ costs) across scenarios revealing how IRP1 (Least-cost) is 12% cheaper than the most expensive scenario (IRP7)

Note: Shift from 2017 to 2018 based on immediate move to cost reflectivity
Sources: Draft IRP 2018. CSIR Energy Centre analysis
Total system cost increase as the power system grows (as expected) IRP1 is least-cost and ≈R60-bn/yr cheaper than IRP7 by 2050

Note: Shift from 2017 to 2018 based on immediate move to cost reflectivity
Sources: Draft IRP 2018. CSIR Energy Centre analysis
Energy mix by 2030 similar across scenarios as coal still dominates while IRP1 is $\approx$R10bn/yr cheaper than IRP7, IRP7 lowest CO$_2$ emissions

### 2030

#### Energy Mix in 2030

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Coal</th>
<th>Coal (New)</th>
<th>Gas - CCGT</th>
<th>Peaking</th>
<th>Wind</th>
<th>Solar PV</th>
<th>Biomass/-gas</th>
<th>Other Storage</th>
</tr>
</thead>
<tbody>
<tr>
<td>IRP1</td>
<td>15</td>
<td>2</td>
<td>2</td>
<td>42</td>
<td>14</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>IRP3</td>
<td>153</td>
<td>14</td>
<td>2</td>
<td>42</td>
<td>2</td>
<td>14</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>IRP5</td>
<td>158</td>
<td>13</td>
<td>2</td>
<td>42</td>
<td>2</td>
<td>13</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>IRP6</td>
<td>158</td>
<td>13</td>
<td>2</td>
<td>42</td>
<td>2</td>
<td>13</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>IRP7</td>
<td>150</td>
<td>26</td>
<td>2</td>
<td>42</td>
<td>2</td>
<td>14</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Rec.</td>
<td>156</td>
<td>13</td>
<td>2</td>
<td>42</td>
<td>2</td>
<td>14</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

#### Cost in 2030

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Total system cost$^1$ (R-billion/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IRP1</td>
<td>360</td>
</tr>
<tr>
<td>IRP3</td>
<td>361</td>
</tr>
<tr>
<td>IRP5</td>
<td>367</td>
</tr>
<tr>
<td>IRP6</td>
<td>362</td>
</tr>
<tr>
<td>IRP7</td>
<td>373</td>
</tr>
<tr>
<td>Rec.</td>
<td>375</td>
</tr>
</tbody>
</table>

#### Environment in 2030

<table>
<thead>
<tr>
<th>Scenario</th>
<th>CO$_2$ emissions (Mt/yr)</th>
<th>Water usage (billion-litres/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IRP1</td>
<td>217</td>
<td>199</td>
</tr>
<tr>
<td>IRP3</td>
<td>215</td>
<td>199</td>
</tr>
<tr>
<td>IRP5</td>
<td>213</td>
<td>198</td>
</tr>
<tr>
<td>IRP6</td>
<td>215</td>
<td>199</td>
</tr>
<tr>
<td>IRP7</td>
<td>207</td>
<td>191</td>
</tr>
<tr>
<td>Rec.</td>
<td>215</td>
<td>199</td>
</tr>
</tbody>
</table>

Sources: DoE Draft IRP 2018; Eskom on Tx, Dx costs; CSIR analysis; flaticon.com
Least-cost mix confirmed as new-build solar PV, wind and flexible capacity (NG) - ≈R15-55 bn/yr cheaper than alternative scenarios

### 2040

#### Energy Mix

**Demand: 353 TWh**

<table>
<thead>
<tr>
<th>IRP</th>
<th>Coal (30%)</th>
<th>Nuclear</th>
<th>Gas - CCGT</th>
<th>Peaking</th>
<th>Wind</th>
<th>Solar PV</th>
<th>Other Storage</th>
</tr>
</thead>
<tbody>
<tr>
<td>IRP3</td>
<td>106 (30%)</td>
<td>15</td>
<td>15</td>
<td>29</td>
<td>90</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>IRP5</td>
<td>104 (29%)</td>
<td>15</td>
<td>11</td>
<td>29</td>
<td>89</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>IRP6</td>
<td>97 (27%)</td>
<td>15</td>
<td>33</td>
<td>12</td>
<td>30</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>IRP7</td>
<td>99 (28%)</td>
<td>15</td>
<td>43</td>
<td>12</td>
<td>29</td>
<td>2</td>
<td>4</td>
</tr>
</tbody>
</table>

**Rec.** 9 (2%)

#### Cost

**Total system cost\(^1\) (R-billion/yr)**

<table>
<thead>
<tr>
<th>IRP</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>IRP1</td>
<td>441</td>
</tr>
<tr>
<td>IRP3</td>
<td>466</td>
</tr>
<tr>
<td>IRP5</td>
<td>473</td>
</tr>
<tr>
<td>IRP6</td>
<td>477</td>
</tr>
<tr>
<td>IRP7</td>
<td>494</td>
</tr>
</tbody>
</table>

#### Environment

**CO\(_2\) emissions (Mt/yr)**

<table>
<thead>
<tr>
<th>IRP</th>
<th>CO(_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IRP1</td>
<td>123</td>
</tr>
<tr>
<td>IRP3</td>
<td>153</td>
</tr>
<tr>
<td>IRP5</td>
<td>168</td>
</tr>
<tr>
<td>IRP6</td>
<td>116</td>
</tr>
<tr>
<td>IRP7</td>
<td>119</td>
</tr>
</tbody>
</table>

**Water usage (billion-litres/yr)**

<table>
<thead>
<tr>
<th>IRP</th>
<th>Water usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>IRP1</td>
<td>59</td>
</tr>
<tr>
<td>IRP3</td>
<td>66</td>
</tr>
<tr>
<td>IRP5</td>
<td>70</td>
</tr>
<tr>
<td>IRP6</td>
<td>56</td>
</tr>
<tr>
<td>IRP7</td>
<td>58</td>
</tr>
</tbody>
</table>

**Sources:** DoE Draft IRP 2018; Eskom on Tx, Dx costs; CSIR analysis; flaticon.com
By 2050 - Least-cost mix is 70% solar PV and wind, ≈R30-60 bn/yr cheaper than alternatives, least CO₂ emissions and least water usage

### Energy Mix in 2050

- **Demand: 392 TWh**

<table>
<thead>
<tr>
<th>IRP</th>
<th>Coal</th>
<th>Nuclear</th>
<th>Gas - CCGT</th>
<th>Peaking</th>
<th>Hydro+PS</th>
<th>Solar PV</th>
<th>Other Storage</th>
</tr>
</thead>
<tbody>
<tr>
<td>IRP1</td>
<td>68 (17%)</td>
<td>29 17</td>
<td>31 164</td>
<td>78</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IRP3</td>
<td>66 (17%)</td>
<td>31</td>
<td>31 110</td>
<td>63</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IRP5</td>
<td>64 (16%)</td>
<td>31</td>
<td>107</td>
<td>64</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IRP6</td>
<td>57 (15%)</td>
<td>5</td>
<td>31</td>
<td>67</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IRP7</td>
<td>58 (15%)</td>
<td>13</td>
<td>31</td>
<td>64</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### Cost in 2050

- **Total system cost** (R-billion/yr)

  - IRP1: 529
  - IRP3: 560
  - IRP5: 564
  - IRP6: 580
  - IRP7: 591

### Environment in 2050

- **CO₂ emissions** (Mt/yr)

  - IRP1: 82
  - IRP3: 160
  - IRP5: 178
  - IRP6: 92
  - IRP7: 90

- **Water usage** (billion-litres/yr)

  - IRP1: 36
  - IRP3: 54
  - IRP5: 59
  - IRP6: 36
  - IRP7: 38

Sources: DoE Draft IRP 2018; Eskom on Tx, Dx costs; CSIR analysis; flaticon.com
Formal comments on Draft IRP 2018

1 Executive Summary
2 Background
3 Draft IRP 2018 scenarios
4 Draft IRP 2018 employment impacts
5 Draft IRP 2018 energy planning risks
6 System services and technical considerations
The International Jobs and Economic Development Impacts (I-JEDI) model is a freely available economic tool to understand economic changes (jobs focus at this stage) for energy technology choices.

I-JEDI has been customised for application to the South African environment by the CSIR team.

CSIR utilised the developed I-JEDI tool for South Africa to assess the Recommended Plan in the Draft IRP 2018 for a range of technologies including wind, solar, coal and natural gas (for now)... more in future.

High-level approach

- I-JEDI estimates economic impacts by characterising construction and operation of energy projects in terms of expenditures and portion of these made within the country (localised).
- These are then used in a country-specific input-output (I-O) model to estimate employment (amongst a range of other metrics).

An indicative analysis of jobs in nuclear is also provided (but not based on I-JEDI for now).

Analysis of other Draft IRP 2018 scenarios as well as those presented by CSIR to come¹

¹ Time available was not sufficient to do this in the 60 day public consultation period.
Sources: https://www.nrel.gov/analysis/jedi/about.html
Coal dominant in jobs (as expected) but declines to 2030 in Recommended Plan as gas grows, notable gap for wind and PV

Sources: Draft IRP 2018; CSIR Energy Centre analysis
Note: Job potential includes direct, indirect and induced jobs; Nuclear is estimated based on existing experience at Koeberg (KPMG, 2017)
Net job decrease in coal of ≈100k but net gain overall as gas grows to ≈55k jobs towards 2030, RE contributes up to ≈110k by 2030

Sources: Draft IRP 2018; CSIR Energy Centre analysis
Note: Job potential includes direct, indirect and induced jobs; Nuclear is estimated based on existing experience at Koeberg (KPMG, 2017)
Focus on coal: Emphasising impact of construction jobs via new-build (excl. Medupi/Kusile) and net decline in operations jobs to 2030

Sources: Draft IRP 2018; CSIR Energy Centre analysis
Note: Job potential includes direct, indirect and induced jobs
Net job losses in coal overall of ≈100k, direct jobs in coal shifting from ≈80k in 2016 to ≈50k by 2030

Sources: Draft IRP 2018; CSIR Energy Centre analysis
Note: Job potential includes direct, indirect and induced jobs
Formal comments on Draft IRP 2018

1 Executive Summary
2 Background
3 Draft IRP 2018 scenarios
4 Draft IRP 2018 employment impacts
5 Draft IRP 2018 energy planning risks
   5.1 Scenarios
   5.2 Descriptive comments
6 System services and technical considerations
Formal comments on Draft IRP 2018

1 Executive Summary
2 Background
3 Draft IRP 2018 scenarios
4 Draft IRP 2018 employment impacts
5 Draft IRP 2018 energy planning risks

5.1 Scenarios

a Impact of stationary storage
b Impact of Demand Side Response (DSR)
c Technology learning
d Risk-adjusted scenario
e Existing coal fleet performance

5.2 Descriptive comments

6 System services and technical considerations
Formal comments on Draft IRP 2018

1 Executive Summary
2 Background
3 Draft IRP 2018 scenarios
4 Draft IRP 2018 employment impacts
5 Draft IRP 2018 energy planning risks
   5.1 Scenarios
      a Impact of stationary storage
      b Impact of Demand Side Response (DSR)
      c Technology learning
      d Risk-adjusted scenario
      e Existing coal fleet performance
   5.2 Descriptive comments
6 System services and technical considerations
Impact of stationary storage (scenario)

In the Draft IRP 2018 – no cost reductions are considered for stationary storage

What if stationary storage costs start to decline?
Stationary storage (excl. pumped storage):
200 $/kWh (2030), 150 $/kWh (2040), 100 $/kWh (2050)

Overnight capital cost [R/kWh]
(Jan-2017-Rand)

---

Sources: StatsSA for CPI; Draft IRP 2018; CSIR; BNEF; CSIRO (2015); Nykvist (2015); IDC; IRENA (2017)

USD:ZAR = 14.00; NOTE: Battery packs are assumed to make up 60% of total utility-scale stationary storage costs (from BNEF).
Draft IRP 2018 IRP1 with storage cost declines means notably less NG, with storage deployed from 2027, increased solar PV and wind.

Installed capacity and electricity supplied from 2016 to 2030 as planned in the Draft IRP 2018.

**Installed capacity**

<table>
<thead>
<tr>
<th>Year</th>
<th>Total installed capacity (net) [GW]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2016</td>
<td>51.6</td>
</tr>
<tr>
<td>2017</td>
<td>57.8</td>
</tr>
<tr>
<td>2018</td>
<td>60.2</td>
</tr>
<tr>
<td>2019</td>
<td></td>
</tr>
<tr>
<td>2020</td>
<td></td>
</tr>
<tr>
<td>2021</td>
<td></td>
</tr>
<tr>
<td>2022</td>
<td></td>
</tr>
<tr>
<td>2023</td>
<td></td>
</tr>
<tr>
<td>2024</td>
<td></td>
</tr>
<tr>
<td>2025</td>
<td></td>
</tr>
<tr>
<td>2026</td>
<td></td>
</tr>
<tr>
<td>2027</td>
<td></td>
</tr>
<tr>
<td>2028</td>
<td></td>
</tr>
<tr>
<td>2029</td>
<td></td>
</tr>
<tr>
<td>2030</td>
<td>81.7</td>
</tr>
</tbody>
</table>

**Energy mix**

<table>
<thead>
<tr>
<th>Year</th>
<th>Electricity production [TWh/yr]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2016</td>
<td></td>
</tr>
<tr>
<td>2017</td>
<td></td>
</tr>
<tr>
<td>2018</td>
<td></td>
</tr>
<tr>
<td>2019</td>
<td></td>
</tr>
<tr>
<td>2020</td>
<td></td>
</tr>
<tr>
<td>2021</td>
<td></td>
</tr>
<tr>
<td>2022</td>
<td></td>
</tr>
<tr>
<td>2023</td>
<td></td>
</tr>
<tr>
<td>2024</td>
<td></td>
</tr>
<tr>
<td>2025</td>
<td></td>
</tr>
<tr>
<td>2026</td>
<td></td>
</tr>
<tr>
<td>2027</td>
<td></td>
</tr>
<tr>
<td>2028</td>
<td></td>
</tr>
<tr>
<td>2029</td>
<td></td>
</tr>
<tr>
<td>2030</td>
<td>51.6</td>
</tr>
</tbody>
</table>

**First new-builds:**
- PV (2027) 6.2 GW
- Wind (2027) 1.2 GW
- OCGT (2024) 1.9 GW
- Storage (2027) 1.3 GW

Sources: Draft IRP 2018, CSIR Energy Centre analysis

Storage technology cost declines
Draft IRP 2018 IRP1 with storage cost declines means less NG, increased solar PV and wind with considerable deployment post-2030

Installed capacity and electricity supplied from 2016 to 2050 for IRP1 with Demand Side Response

Notes: Assumed capacity factors for wind and solar PV differ slightly to IRP1
Sources: Draft IRP 2018. CSIR Energy Centre analysis

Storage technology cost declines
Difference in installed capacity and energy mix with storage cost declines relative to IRP1, less NG with increased solar PV

Installed capacity and electricity supplied from 2016 to 2050 for IRP 1 with storage cost declines

Sources: Draft IRP 2018. CSIR Energy Centre analysis
CO₂ emissions trajectories for PPD Moderate never binding while water use declines as expected as coal fleet decommissions

IRP 1 with storage cost declines

**CO₂ emissions**

**Electricity sector CO₂ emissions**

- [Mt/yr]

<table>
<thead>
<tr>
<th>Year</th>
<th>IRP1</th>
<th>IRP1 with storage cost declines</th>
<th>PPD (Moderate)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015</td>
<td>275</td>
<td>275</td>
<td>275</td>
</tr>
<tr>
<td>2020</td>
<td>210</td>
<td>82</td>
<td>78</td>
</tr>
<tr>
<td>2025</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2030</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2035</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2040</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2045</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2050</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Water usage**

**Electricity sector Water usage**

- [bl/yr]

<table>
<thead>
<tr>
<th>Year</th>
<th>IRP1</th>
<th>IRP1 with storage cost declines</th>
<th>PPD (Moderate)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2020</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2025</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2030</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2035</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2040</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2045</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2050</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Carbon Budget**

- 2750 Mt
- 1800 Mt
- 920 Mt

**PPD equiv.**

- > 2750 Mt
- 2720 Mt
- 2325 Mt
Total system cost: IRP1 with storage cost declines ≈ R8 bn/year less expensive by 2050 than IRP1, marginal difference before 2030

Note: Average tariff projections (and resulting total system cost) consider an offset representative of Tx/Dx/Other costs to align with starting point of 0.84 ZAR/kWh (0.20 ZAR/kWh). From 2017 to 2018, immediate cost reflectivity is considered too (as in Draft IRP 2018) i.e. 0.21 ZAR/kWh offset.

Sources: Draft IRP 2018. CSIR Energy Centre analysis.
Formal comments on Draft IRP 2018

1 Executive Summary
2 Background
3 Draft IRP 2018 scenarios
4 Draft IRP 2018 employment impacts
5 Draft IRP 2018 energy planning risks
   5.1 Scenarios
      a Impact of stationary storage
      b Impact of Demand Side Response (DSR)
      c Technology learning
      d Risk-adjusted scenario
      e Existing coal fleet performance
6 System services and technical considerations
Impact of demand response - EVs, warm water heating (scenario)

What if the demand side became more flexible and responsive i.e. Demand Side Response (DSR)

Similar to previous comments in Draft IRP 2016 with some updated analysis on DSR options

Warm-water heating (geysers)
Electric vehicles
Majority of EV owners charge vehicles overnight in off-peak – this will have a relatively small impact on demand profile (beyond 2030)

Typical EV charging profiles

Impact of typical EV charging on RSA demand profile

NOTE: EVs assumed only light passenger vehicles for now.
Electric vehicle usage for demand side flexibility
i.e. Vehicle-to-Grid (V2G)

Inclusion of a demand side flexibility resource in the form of mobile storage (electric motor vehicles) demonstrates impact on the power system as adoption increases.

Considered with similar functionality as that of Electric Water Heating (EWH) demand shaping - a resource with intra-day controllability (can be dispatched as needed on any given day) based on power system needs i.e. vehicle-to-grid (V2G)

Key input parameters to estimate potential demand shaping via electric motor vehicles:
- Current population
- Expected population growth to 2050
- Current number of motor vehicles
- Expected motor vehicles per capita
- Adoption rate of electric vehicles to 2050
- Electric vehicle fleet capacity (MW)
- Electric vehicle energy requirement (GWh/d)
- Proportion of electric vehicle fleet connected simultaneously
Electric vehicle demand shaping can provide ~96 GW/4.2 GW (demand increase/decrease) with ~40 GWh/d of dispatchable energy by 2050

<table>
<thead>
<tr>
<th>Property</th>
<th>Unit</th>
<th>2016-2019</th>
<th>2020</th>
<th>2031</th>
<th>2040</th>
<th>2050</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population</td>
<td>[mln]</td>
<td>0 - 0</td>
<td>58.0</td>
<td>61.7</td>
<td>64.9</td>
<td>68.2</td>
</tr>
<tr>
<td>Number of motor vehicles</td>
<td>[mln]</td>
<td>7 - 8.2</td>
<td>8.5</td>
<td>12.3</td>
<td>16.2</td>
<td>20.5</td>
</tr>
<tr>
<td>EVs adoption</td>
<td>[%]</td>
<td>0 - 0</td>
<td>1.5</td>
<td>8.1</td>
<td>28.5</td>
<td>48.9</td>
</tr>
<tr>
<td>Number of EVs</td>
<td>[mln]</td>
<td>0 - 0</td>
<td>0.1</td>
<td>1.0</td>
<td>4.6</td>
<td>10.0</td>
</tr>
<tr>
<td>EVs energy requirement</td>
<td>[TWh/a]</td>
<td>-</td>
<td>0.5</td>
<td>3.7</td>
<td>17.1</td>
<td>37.0</td>
</tr>
<tr>
<td>EVs energy requirement</td>
<td>[GWh/d]</td>
<td>-</td>
<td>1.3</td>
<td>10.1</td>
<td>46.8</td>
<td>101.4</td>
</tr>
<tr>
<td>EVs (demand increase)</td>
<td>[MW]</td>
<td>-</td>
<td>-</td>
<td>4 600</td>
<td>44 300</td>
<td>95 800</td>
</tr>
<tr>
<td>EVs (demand decrease)</td>
<td>[MW]</td>
<td>-</td>
<td>-</td>
<td>400</td>
<td>2 000</td>
<td>4 200</td>
</tr>
</tbody>
</table>

Sources: CSIR estimates; StatsSA; eNaTis
Demand shaping as a demand side resource - domestic electric heaters (EWHs)

Many opportunities for demand shaping in a number of end-use sectors (domestic, commercial, industrial)

In the scenarios assessed by CSIR - the intention of including one particular demand shaping opportunity (domestic electric water heating) is to demonstrate the significant impact this can have on the power system.

Modelled as a resource with intra-day controllability (can be dispatched as needed on any given day) based on power system needs

Key input parameters to estimate potential demand shaping via EWH:

- South African population (to 2050)
- Number of households (current)
- Number of persons per household (future)
- EWHs (current)
- EWHs per household (future)
- Adoption rate of demand shaping via EWHs (future)
- Calibration for power (MW) and energy (TWh) used for electric water heating (existing)
- Movement to EWH technologies i.e. heat pumps vs electric geysers (future)
Demand shaping can provide ~24 GW/3 GW (demand increase/decrease) with ~70 GWh/d of dispatchable energy by 2050

<table>
<thead>
<tr>
<th>Property</th>
<th>Unit</th>
<th>2016-2019</th>
<th>2020</th>
<th>2030</th>
<th>2040</th>
<th>2050</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population</td>
<td>[mln]</td>
<td>55.7 - 57.5</td>
<td>58.0</td>
<td>61.7</td>
<td>64.9</td>
<td>68.2</td>
</tr>
<tr>
<td>Number of HHs</td>
<td>[mln]</td>
<td>16.9 - 18.1</td>
<td>18.5</td>
<td>22.4</td>
<td>26.0</td>
<td>27.3</td>
</tr>
<tr>
<td>Residents per HH</td>
<td>[ppl/HH]</td>
<td>3.29 - 3.17</td>
<td>3.13</td>
<td>2.75</td>
<td>2.50</td>
<td>2.50</td>
</tr>
<tr>
<td>HHs with EWH</td>
<td>[%]</td>
<td>28 - 33</td>
<td>34</td>
<td>50</td>
<td>75</td>
<td>100</td>
</tr>
<tr>
<td>HHs with EWH</td>
<td>[mln]</td>
<td>4.7 - 5.9</td>
<td>6.3</td>
<td>11.2</td>
<td>19.5</td>
<td>27.3</td>
</tr>
<tr>
<td>Demand shaping adoption</td>
<td>[%]</td>
<td>-</td>
<td>2</td>
<td>25</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Demand shaping</td>
<td>[TWh/a]</td>
<td>-</td>
<td>0.4</td>
<td>5.4</td>
<td>28.3</td>
<td>26.4</td>
</tr>
<tr>
<td>Demand shaping</td>
<td>[GWh/d]</td>
<td>-</td>
<td>1.1</td>
<td>14.9</td>
<td>77.4</td>
<td>72.3</td>
</tr>
<tr>
<td>Demand shaping (demand increase)</td>
<td>[MW]</td>
<td>-</td>
<td>371</td>
<td>4 991</td>
<td>25 970</td>
<td>24 265</td>
</tr>
<tr>
<td>Demand shaping (demand decrease)</td>
<td>[MW]</td>
<td>-</td>
<td>46</td>
<td>620</td>
<td>3 226</td>
<td>3 015</td>
</tr>
</tbody>
</table>

Sources: CSIR estimates; StatsSA; AMPS survey; Statista; Eskom; Draft IRP 2016
Draft IRP 2018 IRP1 with DSR impact marginal, shift in timing of import hydro, wind & PV (2030-2040)

Installed capacity and electricity supplied from 2016 to 2050 for IRP1 with Demand Side Response

**Installed capacity**

**Total installed capacity (net) [GW]**

<table>
<thead>
<tr>
<th>Year</th>
<th>DR</th>
<th>CSP</th>
<th>Gas</th>
<th>Coal</th>
</tr>
</thead>
<tbody>
<tr>
<td>2016</td>
<td>51.6</td>
<td>1.5</td>
<td>6.5</td>
<td>8.9</td>
</tr>
<tr>
<td>2020</td>
<td>57.8</td>
<td>1.5</td>
<td>6.5</td>
<td>8.9</td>
</tr>
<tr>
<td>2025</td>
<td>60.5</td>
<td>1.5</td>
<td>6.5</td>
<td>8.9</td>
</tr>
</tbody>
</table>

**Energy mix**

**Electricity production [TWh/yr]**

<table>
<thead>
<tr>
<th>Year</th>
<th>PV (2027)</th>
<th>Wind (2027)</th>
<th>OCGT (2024)</th>
<th>Nuclear (new)</th>
<th>Nuclear</th>
<th>Hydro+PS</th>
<th>Peaking</th>
<th>Coal (New)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2016</td>
<td>209</td>
<td>209</td>
<td>209</td>
<td>209</td>
<td>209</td>
<td>209</td>
<td>209</td>
<td>209</td>
</tr>
<tr>
<td>2020</td>
<td>271</td>
<td>271</td>
<td>271</td>
<td>271</td>
<td>271</td>
<td>271</td>
<td>271</td>
<td>271</td>
</tr>
<tr>
<td>2025</td>
<td>298</td>
<td>298</td>
<td>298</td>
<td>298</td>
<td>298</td>
<td>298</td>
<td>298</td>
<td>298</td>
</tr>
<tr>
<td>2030</td>
<td>320</td>
<td>320</td>
<td>320</td>
<td>320</td>
<td>320</td>
<td>320</td>
<td>320</td>
<td>320</td>
</tr>
<tr>
<td>2035</td>
<td>339</td>
<td>339</td>
<td>339</td>
<td>339</td>
<td>339</td>
<td>339</td>
<td>339</td>
<td>339</td>
</tr>
<tr>
<td>2040</td>
<td>360</td>
<td>360</td>
<td>360</td>
<td>360</td>
<td>360</td>
<td>360</td>
<td>360</td>
<td>360</td>
</tr>
<tr>
<td>2045</td>
<td>379</td>
<td>379</td>
<td>379</td>
<td>379</td>
<td>379</td>
<td>379</td>
<td>379</td>
<td>379</td>
</tr>
<tr>
<td>2050</td>
<td>398</td>
<td>398</td>
<td>398</td>
<td>398</td>
<td>398</td>
<td>398</td>
<td>398</td>
<td>398</td>
</tr>
</tbody>
</table>

**Demand: Median**

**First new-builds:**

- **PV (2027):** 5.2 GW
- **Wind (2027):** 1.1 GW
- **OCGT (2024):** 1.9 GW

Notes: NG = Natural gas
Sources: Draft IRP 2018. CSIR Energy Centre analysis
Difference in installed capacity and energy mix with DSR relative to IRP1 marginal, shift in timing of import hydro, wind & PV (2030-2040)

Installed capacity and electricity supplied from 2016 to 2050 for IRP1 with Demand Side Response

Sources: Draft IRP 2018. CSIR Energy Centre analysis
CO₂ emissions trajectories for PPD Moderate never binding while water use declines as expected as coal fleet decommissions

IRP 1 with Demand Side Response

CO₂ emissions trajectories for PPD Moderate never binding while water use declines as expected as coal fleet decommissions

IRP 1 with Demand Side Response

Carbon Budget
PPD equiv.
2750 Mt > 2750 Mt
1800 Mt 2720 Mt
920 Mt 2325 Mt

Electricity sector CO₂ emissions [Mt/yr]

Electricity sector Water usage [bl/yr]
Total system cost: IRP1 with DSR marginal difference in total system cost relative to IRP1

**Net Present Value System Cost**
(2016 - 2050)

Note: Average tariff projections (and resulting total system cost) consider an offset representative of Tx/Dx/Other costs to align with starting point of 0.84 ZAR/kWh (0.20 ZAR/kWh). From 2017 to 2018, immediate cost reflectivity is considered too (as in Draft IRP 2018) i.e. 0.21 ZAR/kWh offset.

Sources: Draft IRP 2018. CSIR Energy Centre analysis. Eskom on Tx, Dx costs
Generally – additional EV demand met by least-cost mix of wind, solar PV and gas whilst V2G shifts this mix more towards solar PV and less gas

Impact on least-cost capacity mix

**EVs typical configuration**  
(G2V i.e. additional demand)

- For 1-mln EVs, increase of ≈3 TWh/yr
- For 1-mln EVs, increase ≈1 GW peak demand
- New build capacity to meet charging demand is mostly wind, solar PV and gas
- Most charging demand met by wind and gas

**EVs as a demand shaping resource**  
(V2G i.e. implicit in demand)

- Increase in proportion of new solar PV vs. wind
- Less gas capacity i.e. lower gas energy share
- Relative reduction in total system cost

---

**G2V - Grid to vehicle**  
**V2G - Vehicle to grid**
Formal comments on Draft IRP 2018

1 Executive Summary
2 Background
3 Draft IRP 2018 scenarios
4 Draft IRP 2018 employment impacts
5 Draft IRP 2018 energy planning risks
   5.1 Scenarios
      a Impact of stationary storage
      b Impact of Demand Side Response (DSR)
      c Technology learning
      d Risk-adjusted scenario
      e Existing coal fleet performance
   5.2 Descriptive comments
6 System services and technical considerations
Solar PV learning assumptions in Draft IRP 2018
Actual solar PV tariffs and forecasted tariff trajectory

Equivalent tariff,
Jan 2017, [ZAR/kWh]

Actuals: REIPPPP (BW1-4Exp)
Assumption for further RE cost reductions
Assumptions: IRP 2016 (Upper)
Assumptions: IRP 2016 (Lower)
Assumptions: IRP 2018 (Upper)
Assumptions: IRP 2018 (Lower)

Actual solar PV tariffs and forecasted tariff trajectory

Sources: StatsSA for CPI; IRP 2010; South African Department of Energy (DoE); DoE IPP Office; CSIR analysis. Learning rate - Bloomberg New Energy Outlook 2017
Wind cost learning assumptions in Draft IRP 2018
Actual wind tariffs and forecasted tariff trajectory

Equivalent tariff, Jan 2017, [ZAR/kWh]

BW1 → BW 4 (Expedited)

Sources: StatsSA for CPI; IRP 2010; South African Department of Energy (DoE); DoE IPP Office; CSIR analysis. Learning rate - Bloomberg New Energy Outlook 2017
Input assumptions for CSP from Draft IRP 2018 and further cost declines
Today’s latest tariff as starting point, same cost decline as per IRP 2010

Equivalent tariff, Jan 2017, [ZAR/kWh]

Notes: REIPPPP = Renewable Energy Independent Power Producer Programme; BW = Bid Window; bid submissions for the different BWs: BW1 = Nov 2011; BW2 = Mar 2012; BW 3 = Aug 2013; BW 4 = Aug 2014; BW 4 (Expedited) = Nov 2015; For CSP bid window 3, 3.5 and 4 Exp, weighted average tariff of base and peak tariff calculated on the assumption of 64%/36% base/peak tariff utilisation ratio; Sources: StatsSA for CPI; IRP 2010; South African Department of Energy (DoE); DoE IPP Office; CSIR analysis

BW1 → BW 4 (Expedited)
Draft IRP 2018 IRP1 with further RE cost reductions, increased solar PV and wind from 2030 onwards, timing unchanged, no import hydro

Installed capacity and electricity supplied from 2016 to 2050 for IRP1 with higher RE cost reductions

**Installed capacity**

<table>
<thead>
<tr>
<th>Year</th>
<th>Total installed capacity (net) [GW]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2016</td>
<td>51.6</td>
</tr>
<tr>
<td>2020</td>
<td>57.8</td>
</tr>
<tr>
<td>2025</td>
<td>60.2</td>
</tr>
<tr>
<td>2030</td>
<td>84.0</td>
</tr>
<tr>
<td>2035</td>
<td>107.2</td>
</tr>
<tr>
<td>2040</td>
<td>142.8</td>
</tr>
<tr>
<td>2045</td>
<td>164.8</td>
</tr>
<tr>
<td>2050</td>
<td>184.2</td>
</tr>
</tbody>
</table>

**Energy mix**

<table>
<thead>
<tr>
<th>Year</th>
<th>Electricity production [TWh/yr]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2016</td>
<td>209</td>
</tr>
<tr>
<td>2020</td>
<td>271</td>
</tr>
<tr>
<td>2025</td>
<td>298</td>
</tr>
<tr>
<td>2030</td>
<td>321</td>
</tr>
<tr>
<td>2035</td>
<td>342</td>
</tr>
<tr>
<td>2040</td>
<td>361</td>
</tr>
<tr>
<td>2045</td>
<td>381</td>
</tr>
<tr>
<td>2050</td>
<td>399</td>
</tr>
</tbody>
</table>

**Sources:** Draft IRP 2018. CSIR Energy Centre analysis

**First new-builds:**

- **PV (2027):** 5.9 GW
- **Wind (2027):** 2.8 GW
- **OCGT (2024):** 1.9 GW
Difference in installed capacity and energy mix with higher RE cost reductions relative to IRP1, higher RE & peaking gas, less mid-merit gas

Installed capacity and electricity supplied from 2016 to 2050 for IRP1 with higher RE cost reductions

Sources: Draft IRP 2018. CSIR Energy Centre analysis
CO₂ emissions trajectories for PPD Moderate never binding while water use declines as expected as coal fleet decommissions

IRP 1 with higher RE cost reductions

**Electricity sector CO₂ emissions [Mt/yr]**

<table>
<thead>
<tr>
<th>Year</th>
<th>IRP1</th>
<th>IRP1 with further RE cost reductions</th>
<th>PPD (Moderate)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015</td>
<td>82</td>
<td>76</td>
<td>275</td>
</tr>
<tr>
<td>2020</td>
<td>275</td>
<td>275</td>
<td>275</td>
</tr>
<tr>
<td>2025</td>
<td>275</td>
<td>275</td>
<td>210</td>
</tr>
<tr>
<td>2030</td>
<td>275</td>
<td>275</td>
<td></td>
</tr>
<tr>
<td>2035</td>
<td>275</td>
<td>275</td>
<td></td>
</tr>
<tr>
<td>2040</td>
<td>275</td>
<td>275</td>
<td></td>
</tr>
<tr>
<td>2045</td>
<td>275</td>
<td>275</td>
<td></td>
</tr>
<tr>
<td>2050</td>
<td>275</td>
<td>275</td>
<td></td>
</tr>
</tbody>
</table>

**Water usage [bl/yr]**

<table>
<thead>
<tr>
<th>Year</th>
<th>IRP1</th>
<th>IRP1 with further RE cost reductions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015</td>
<td>82</td>
<td>76</td>
</tr>
<tr>
<td>2020</td>
<td>275</td>
<td>275</td>
</tr>
<tr>
<td>2025</td>
<td>275</td>
<td>275</td>
</tr>
<tr>
<td>2030</td>
<td>275</td>
<td>275</td>
</tr>
<tr>
<td>2035</td>
<td>275</td>
<td>275</td>
</tr>
<tr>
<td>2040</td>
<td>275</td>
<td>275</td>
</tr>
<tr>
<td>2045</td>
<td>275</td>
<td>275</td>
</tr>
<tr>
<td>2050</td>
<td>275</td>
<td>275</td>
</tr>
</tbody>
</table>

**Carbon Budget**

- 2750 Mt
- 1800 Mt
- 920 Mt

**PPD equiv.**

- > 2750 Mt
- 2720 Mt
- 2325 Mt
Total system cost: IRP1 with higher RE cost reductions would result in lower system cost

Note: Average tariff projections (and resulting total system cost) consider an offset representative of Tx/Dx/Other costs to align with starting point of 0.84 ZAR/kWh (0.20 ZAR/kWh). From 2017 to 2018, immediate cost reflectivity is considered too (as in Draft IRP 2018) i.e. 0.21 ZAR/kWh offset.

Sources: Draft IRP 2018. CSIR Energy Centre analysis. Eskom on Tx, Dx costs
Formal comments on Draft IRP 2018

1 Executive Summary

2 Background

3 Draft IRP 2018 scenarios

4 Draft IRP 2018 employment impacts

5 Draft IRP 2018 energy planning risks

5.1 Scenarios

   a Impact of stationary storage
   b Impact of Demand Side Response (DSR)
   c Technology learning

   d Risk-adjusted scenario

   e Existing coal fleet performance

5.2 Descriptive comments

6 System services and technical considerations
Draft IRP 2018 IRP1 with storage, DSR and lower RE costs results in increased new-build wind, solar PV, storage and less NG

Installed capacity and electricity supplied from 2016 to 2050 for IRP1 with storage, DSR and higher RE cost reductions

Notes: NG = Natural gas
Sources: Draft IRP 2018. CSIR Energy Centre analysis
Difference in installed capacity and energy mix Risk-adjusted scenario relative to IRP1, higher wind, PV & storage, less NG

Installed capacity and electricity supplied from 2016 to 2050 for IRP1 with storage, DSR and higher RE cost reductions.

Sources: Draft IRP 2018. CSIR Energy Centre analysis.
CO\textsubscript{2} emissions trajectories for PPD Moderate never binding while water use declines as expected as coal fleet decommissions
IRP 1 with storage, DSR and higher RE cost reductions
Total system cost: Risk-adjusted scenario results in lower system cost than IRP1

![Graph showing total system cost over time](image)

Note: Average tariff projections (and resulting total system cost) consider an offset representative of Tx/Dx/Other costs to align with starting point of 0.84 ZAR/kWh (0.20 ZAR/kWh). From 2017 to 2018, immediate cost reflectivity is considered too (as in Draft IRP 2018) i.e. 0.21 ZAR/kWh offset.

Sources: Draft IRP 2018. CSIR Energy Centre analysis. Eskom on Tx, Dx costs.
Draft IRP 2018 IRP1: 2030

Exemplary Week under Draft IRP 2018 IRP1

Demand and Supply in GW

Sources: CSIR analysis
Risk-Adjusted Scenario: 2030

Demand and Supply in GW

Exemplary Week under Risk-Adjusted Scenario

Sources: CSIR analysis
Exemplary Week under Draft IRP 2018 IRP1

Demand and Supply in GW

Sources: CSIR analysis
Risk-Adjusted: 2040

Exemplary Week under Risk-Adjusted Scenario

Demand and Supply in GW

Sources: CSIR analysis
Draft IRP 2018 IRP1: 2050

Exemplary Week under Draft IRP 2018 IRP1

Sources: CSIR analysis
Exemplary Week under Risk-Adjusted Scenario

Sources: CSIR analysis
Formal comments on Draft IRP 2018

1 Executive Summary
2 Background
3 Draft IRP 2018 scenarios
4 Draft IRP 2018 employment impacts
5 Draft IRP 2018 energy planning risks
   5.1 Scenarios
    a Impact of stationary storage
    b Impact of Demand Side Response (DSR)
    c Technology learning
    d Risk-adjusted scenario
    e Existing coal fleet performance
     e.a IRP1 with low coal fleet performance
     e.b Risk-adjusted with low coal fleet performance
5.2 Descriptive comments
6 System services and technical considerations
1 Executive Summary

2 Background

3 Draft IRP 2018 scenarios

4 Draft IRP 2018 employment impacts

5 Draft IRP 2018 energy planning risks

5.1 Scenarios

   a Impact of stationary storage

   b Impact of Demand Side Response (DSR)

   c Technology learning

   d Risk-adjusted scenario

   e Existing coal fleet performance

   **e.a IRP1 with low coal fleet performance**

   **e.b Risk-adjusted with low coal fleet performance**

5.2 Descriptive comments

6 System services and technical considerations
Eskom existing fleet performance – EAF (scenario)

If the existing coal fleet does not recover to the expected “Moderate” EAF used in the Draft IRP 2018

“Low” EAF of existing coal fleet is considered to test

Energy Availability Factor (EAF) [%]

Low  Moderate  High
Draft IRP 2018 IRP1 with Low EAF requires earlier new-build around 2023 and increased absolute levels of new-build by 2030

Installed capacity and electricity supplied from 2016 to 2050 for IRP1 with low coal fleet EAF.
Difference in capacity and energy mix with low EAF relative to IRP1, increased level of new-build, built earlier to cater for lower coal supply

Installed capacity and electricity supplied from 2016 to 2050 for IRP1 with low coal fleet EAF

Sources: Draft IRP 2018. CSIR Energy Centre analysis
CO\textsubscript{2} emissions trajectories for PPD Moderate never binding while water use declines as expected as coal fleet decommissions

IRP 1 with low coal fleet EAF
Total system cost: IRP1 with low EAF higher system cost than IRP1 due to additional capacity required

Net Present Value
System Cost
(2016 - 2050)

Total System Cost

Total system cost in bR/yr
(Jan-2017 Rand)

IRP1  IRP1 Low EAF

2015  2020  2025  2030  2035  2040  2045  2050

199  299  360  371  441  445  529

IRP1  IRP1 Low EAF

4 018  4 067

+49 (+1.2%)

Note: Average tariff projections (and resulting total system cost) consider an offset representative of Tx/Dx/Other costs to align with starting point of 0.84 ZAR/kWh (0.20 ZAR/kWh). From 2017 to 2018, immediate cost reflectivity is considered too (as in Draft IRP 2018) i.e. 0.21 ZAR/kWh offset.

Sources: Draft IRP 2018. CSIR Energy Centre analysis. Eskom on Tx, Dx costs
Formal comments on Draft IRP 2018

1 Executive Summary
2 Background
3 Draft IRP 2018 scenarios
4 Draft IRP 2018 employment impacts
5 Draft IRP 2018 energy planning risks
5.1 Scenarios
   a Impact of stationary storage
   b Impact of Demand Side Response (DSR)
   c Technology learning
   d Risk-adjusted scenario
   e Existing coal fleet performance
      e.a IRP1 with low coal fleet performance
      e.b Risk-adjusted with low coal fleet performance
5.2 Descriptive comments
6 System services and technical considerations
Risk-adjusted scenario with Low EAF requires earlier new-build around 2023 too and increased absolute levels of new-build by 2030

Installed capacity and electricity supplied from 2016 to 2050 for Risk-adjusted scenario with low coal fleet EAF

### Installed capacity

<table>
<thead>
<tr>
<th>Year</th>
<th>Total installed capacity (net) [GW]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2016</td>
<td>51.6</td>
</tr>
<tr>
<td>2020</td>
<td>57.8</td>
</tr>
<tr>
<td>2025</td>
<td>69.1</td>
</tr>
<tr>
<td>2030</td>
<td>97.1</td>
</tr>
<tr>
<td>2035</td>
<td>116.9</td>
</tr>
<tr>
<td>2040</td>
<td>149.2</td>
</tr>
<tr>
<td>2045</td>
<td>174.9</td>
</tr>
<tr>
<td>2050</td>
<td>191.0</td>
</tr>
</tbody>
</table>

### Energy mix

<table>
<thead>
<tr>
<th>Year</th>
<th>Electricity production [TWh/yr]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2016</td>
<td>208</td>
</tr>
<tr>
<td>2020</td>
<td>249</td>
</tr>
<tr>
<td>2025</td>
<td>298</td>
</tr>
<tr>
<td>2030</td>
<td>320</td>
</tr>
<tr>
<td>2035</td>
<td>340</td>
</tr>
<tr>
<td>2040</td>
<td>361</td>
</tr>
<tr>
<td>2045</td>
<td>382</td>
</tr>
<tr>
<td>2050</td>
<td>399</td>
</tr>
</tbody>
</table>

Sources: Draft IRP 2018. CSIR Energy Centre analysis

**Risk-adjusted scenario - Low EAF**

**First new-builds:**
- **PV (2023)**: 0.4 GW
- **Wind (2023)**: 0.2 GW
- **OCGT (2023)**: 1.9 GW
Difference in capacity and energy mix with low EAF relative to IRP1, increased level of new-build, built earlier to cater for lower coal supply

Installed capacity

Energy mix

Sources: Draft IRP 2018. CSIR Energy Centre analysis
CO2 emissions trajectories for PPD Moderate never binding while water use declines as expected as coal fleet decommissions

Risk-adjusted scenario with low coal fleet EAF

CO2 emissions

<table>
<thead>
<tr>
<th>Electricity sector</th>
<th>CO2 emissions [Mt/yr]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015</td>
<td>275</td>
</tr>
<tr>
<td>2020</td>
<td>275</td>
</tr>
<tr>
<td>2025</td>
<td>275</td>
</tr>
<tr>
<td>2030</td>
<td>210</td>
</tr>
<tr>
<td>2035</td>
<td>82</td>
</tr>
<tr>
<td>2040</td>
<td>71</td>
</tr>
<tr>
<td>2045</td>
<td>0</td>
</tr>
<tr>
<td>2050</td>
<td>0</td>
</tr>
</tbody>
</table>

Water usage

<table>
<thead>
<tr>
<th>Electricity sector</th>
<th>Water usage [bl/yr]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015</td>
<td>36</td>
</tr>
<tr>
<td>2020</td>
<td>36</td>
</tr>
<tr>
<td>2025</td>
<td>31</td>
</tr>
<tr>
<td>2030</td>
<td>0</td>
</tr>
<tr>
<td>2035</td>
<td>0</td>
</tr>
<tr>
<td>2040</td>
<td>0</td>
</tr>
<tr>
<td>2045</td>
<td>0</td>
</tr>
<tr>
<td>2050</td>
<td>0</td>
</tr>
</tbody>
</table>

Carbon Budget

- PPD equiv. > 2750 Mt
- 2750 Mt
- 1800 Mt
- 920 Mt

PPD (Moderate)

- 2700 Mt
- 2720 Mt
- 2325 Mt
Total system cost: Risk-Adjusted with low EAF results in higher system cost than mod EAF due to additional capacity required pre-2035

Note: Average tariff projections (and resulting total system cost) consider an offset representative of Tx/Dx/Other costs to align with starting point of 0.84 ZAR/kWh (0.20 ZAR/kWh). From 2017 to 2018, immediate cost reflectivity is considered too (as in Draft IRP 2018) i.e. 0.21 ZAR/kWh offset.

Sources: Draft IRP 2018. CSIR Energy Centre analysis. Eskom on Tx, Dx costs
Formal comments on Draft IRP 2018

1 Executive Summary

2 Background

3 Draft IRP 2018 scenarios

4 Draft IRP 2018 employment impacts

5 Draft IRP 2018 energy planning risks

  5.1 Scenarios

  5.2 Descriptive comments

    a Technology new-build limits
    b New-build and under-construction coal capacity
    c Natural gas
    d Planning for embedded generation
    e Demand profile

6 System services and technical considerations
Formal comments on Draft IRP 2018

1 Executive Summary
2 Background
3 Draft IRP 2018 scenarios
4 Draft IRP 2018 employment impacts
5 Draft IRP 2018 energy planning risks
   5.1 Scenarios
   5.2 Descriptive comments
       a Technology new-build limits
          b New-build and under-construction coal capacity
          c Natural gas
          d Planning for embedded generation
          e Demand profile
6 System services and technical considerations
Draft IRP 2018 investigated implications of unconstrained least-cost (IRP1) but RE new-build limits are maintained for all other scenarios

“The scenario without new-build limits provides the least-cost option by 2030”

“Imposing new-build limits on RE will not affect the total installed capacity and the energy mix for the period up to 2030”

“The scenario without RE annual build limits provides the least-cost option by 2050”

“The scenario without RE annual build limits provides the least-cost electricity path to 2050”

Why new-build limits (on any technology – needs justification)?

Could be various reasons

• Import/transport link limitations (infrastructure – ports, roads)
• Industry ability to deliver (skills, development, construction)
• Available Tx/Dx networks to evacuate power
• System security/stability
Draft IRP 2018 RE annual new-build limits have thusfar not been justified

New-build limits on technologies means no more than these limits are allowed to be built in any given year

Limits have been applied to two technologies (others unlimited):
  Solar PV
  Wind

Limits are constant as power system grows

No justification provided for these limits

Sources: Scatec; Hopefield
Solar PV is limited to 1000 MW annually resulting in a move from 2.5% of peak demand in 2020 to 1.7% of peak demand by 2050.

Sources: Eskom; Draft IRP 2018; CSIR analysis
Wind is limited to 1600 MW annually resulting in a move from 4.0% of peak demand in 2020 to 2.7% of peak demand by 2050.

Sources: Eskom; Draft IRP 2018; CSIR analysis
Already happening: Both leader, follower and 2nd wave countries installing more new solar PV per year than South Africa’s IRP limits for 2030/2050

New-build solar PV capacity, annually [% of peak demand]

RSA new-build limits in 2030 and 2050

Source: SolarPowerEurope; CIGRE; websites of System Operators; IRP 2016 Draft; CSIR analysis
Already happening: Both leader and follower countries are installing more new wind capacity per year than South Africa’s IRP limits for 2030/2050.

New-build wind capacity, annually [\% of peak demand]

Sources: GWEC; CIGRE; websites of System Operators; IRP 2016 Draft; CSIR analysis
Solar PV penetration in leading countries already up to 1.3x levels expected in Draft IRP 2018 (constrained scenarios) by 2050

Total solar PV capacity relative to system peak demand

- Leader
- Follower
- Follower 2nd wave

Sources: SolarPowerEurope; CIGRE; websites of System Operators; IRP 2016 Draft; CSIR analysis
Wind penetration in leading countries is already at levels up to 1.4x Draft IRP 2018 (constrained scenarios) by 2050

<table>
<thead>
<tr>
<th>Country</th>
<th>Total Wind Capacity Relative to System Peak Load</th>
</tr>
</thead>
<tbody>
<tr>
<td>Germany</td>
<td>Leader</td>
</tr>
<tr>
<td>Spain</td>
<td>Leader</td>
</tr>
<tr>
<td>Ireland</td>
<td>Leader</td>
</tr>
<tr>
<td>China</td>
<td>Follower</td>
</tr>
<tr>
<td>India</td>
<td>Follower</td>
</tr>
<tr>
<td>Brazil</td>
<td>Follower</td>
</tr>
<tr>
<td>South Africa</td>
<td>Follower</td>
</tr>
<tr>
<td></td>
<td>Draft IRP 2018 (IRP1)</td>
</tr>
<tr>
<td></td>
<td>Draft IRP 2018 (Others)</td>
</tr>
<tr>
<td></td>
<td>Draft IRP 2018 (Recommended)</td>
</tr>
</tbody>
</table>

Sources: GWEC; CIGRE; websites of System Operators; IRP 2016 Draft; CSIR analysis
Some historical perspective - installed capacity reveals the considerable coal build-out South Africa pursued previously.
Initial smaller coal, followed by large 6-pack build-out, more recently Medupi & Kusile – most decommissions in Draft IRP 2018 time horizon

Sources: Draft IRP 2018; CSIR analysis
South Africa embarked on a significant new-build capacity programme previously... in coal – why not now in any other technologies?
Formal comments on Draft IRP 2018

1 Executive Summary
2 Background
3 Draft IRP 2018 scenarios
4 Draft IRP 2018 employment impacts
5 Draft IRP 2018 energy planning risks
   5.1 Scenarios
   5.2 Descriptive comments
      a Technology new-build limits
      b New-build and under-construction coal capacity
      c Natural gas
      d Planning for embedded generation
      e Demand profile
6 System services and technical considerations
Even currently under-construction and committed capacity will be part of planned decommissioning and will require new-build.
New-build largely driven by the planned decommissioning of the existing coal fleet - mostly post 2030

Sources: Draft IRP 2018; CSIR analysis
Should we freely optimise the decommissioning of the existing coal fleet or finish the last 2 units at Kusile?

Should we build new coal capacity in South Africa?

Should a freely optimised existing coal fleet be decommissioned any earlier/later?

Should the last 2 units at Kusile be completed in light of alternatives?

This has been studied in previous work


Summary of outcomes are presented here for reference
System Alternate Value (SAV) approach attempts to obtain the present value of a power station over the full time horizon.
Early decommissioning of oldest selected coal-fired power stations would result in significant savings and a cheaper power system.

Max. allowed equivalent capex cost of remaining 2 Kusile units

<table>
<thead>
<tr>
<th>Power station(s)</th>
<th>SAV</th>
<th>Levelised costs</th>
</tr>
</thead>
<tbody>
<tr>
<td>High demand SAV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low-demand SAV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power station(s)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Formal comments on Draft IRP 2018

1 Executive Summary

2 Background

3 Draft IRP 2018 scenarios

4 Draft IRP 2018 employment impacts

5 Draft IRP 2018 energy planning risks
   5.1 Scenarios
   5.2 Descriptive comments
      a Technology new-build limits
      b New-build and under-construction coal capacity
      c Natural gas
      d Planning for embedded generation
      e Demand profile

6 System services and technical considerations
Need for natural gas: Understanding domestic natural gas options

Natural gas source not critical in IRP at this stage but... whether it is domestic/imported is important

What is the energy security risk of importing all of the natural gas required in Draft IRP 2018 scenarios?

Sources: PetroSA; Eskom; Excellerate
The role of natural gas in the energy mix (likely via imported LNG at this stage) is relatively small to 2030 (2-5%) and up to 15% by 2050.

### 2030

<table>
<thead>
<tr>
<th>Scenario</th>
<th>2030 Energy [TWh]</th>
</tr>
</thead>
<tbody>
<tr>
<td>IRP1</td>
<td>313</td>
</tr>
<tr>
<td>IRP3</td>
<td>313</td>
</tr>
<tr>
<td>IRP5</td>
<td>313</td>
</tr>
<tr>
<td>IRP6</td>
<td>313</td>
</tr>
<tr>
<td>IRP7</td>
<td>311</td>
</tr>
<tr>
<td>Rec.</td>
<td>12 (4%)</td>
</tr>
</tbody>
</table>

### 2040

<table>
<thead>
<tr>
<th>Scenario</th>
<th>2040 Energy [TWh]</th>
</tr>
</thead>
<tbody>
<tr>
<td>IRP1</td>
<td>353</td>
</tr>
<tr>
<td>IRP3</td>
<td>353</td>
</tr>
<tr>
<td>IRP5</td>
<td>355</td>
</tr>
<tr>
<td>IRP6</td>
<td>352</td>
</tr>
<tr>
<td>IRP7</td>
<td>352</td>
</tr>
</tbody>
</table>

### 2050

<table>
<thead>
<tr>
<th>Scenario</th>
<th>2050 Energy [TWh]</th>
</tr>
</thead>
<tbody>
<tr>
<td>IRP1</td>
<td>392</td>
</tr>
<tr>
<td>IRP3</td>
<td>393</td>
</tr>
<tr>
<td>IRP5</td>
<td>388</td>
</tr>
<tr>
<td>IRP6</td>
<td>391</td>
</tr>
<tr>
<td>IRP7</td>
<td>390</td>
</tr>
</tbody>
</table>

**Domestic sources of flexibility and/or storage could replace some/all of these relatively small volumes of (imported) natural gas in the electricity sector**
e.g. UCG, CBM, shale gas, offshore, hydrogen, DSR, biomass/-gas, CSP, storage (pumped, batteries)
Total system cost contribution of NG fuel requirements (likely via imported LNG at this stage) is 2-4% to 2030 and up to 10% by 2050.

NG – Natural gas; Sources: Draft IRP 2018
Formal comments on Draft IRP 2018

1 Executive Summary
2 Background
3 Draft IRP 2018 scenarios
4 Draft IRP 2018 employment impacts
5 Draft IRP 2018 energy planning risks
   5.1 Scenarios
   5.2 Descriptive comments
      a Technology new-build limits
      b New-build and under-construction coal capacity
      c Natural gas
      d Planning for embedded generation
      e Demand profile
6 System services and technical considerations
Just 5 years ago – power generation capacity was concentrated around Mpumalanga (coal) with some hydro, peaking and nuclear.
By 2018 – generation capacity (albeit still small) has already started to distribute across the country - not only in Mpumalanga anymore.

Sources: Eskom; CSIR analysis
IRP meets energy demand for RSA – expressed as equivalent demand (assumes EG as reduced demand)

Eskom\(^1\) (Gx)

IPPs\(^1\) (Gx)

Imports

Exports

Eskom (Tx\(^2\))

Available for distribution in RSA = 1 + 2 - 3

1. Net sent out
2. Imports
3. Exports

Eskom\(^1\) (Dx\(^2\))

Munics.\(^1\) (Dx\(^2\))

Large customers

Other (Gx)

Customers (Dom/Com/Ind)

Customers (Dom/Com/Ind)

EG (Gx)

EG (Gx)

EG = Embedded Generation; Gx = Generation; Tx = Transmission; Dx = Distribution
1 Power generated less power station load; Minus pumping load (Eskom owned pumped storage); 2 Transmission/distribution networks incur losses before delivery to customers
From Jan-Dec 2016, 234 TWh of net electricity was sent out in SA with imports of almost 11 TWh means system load was 245 TWh
Actuals captured in wholesale market for Jan-Dec 2016 (i.e. without embedded plants)

Notes: “Net Sent Out” = Total domestic generation (less auxiliary load) minus pumping load of Eskom pumped storage stations (not shown seperately)
Sources: Eskom; Statistics South Africa
IRP 2018 expects demand growth to be more certain, slower - average growth from 2016 of 1.2-2.0%/yr to 2030, 1.2-1.7%/yr to 2050

Sources: StatsSA; Draft IRP 2018
"Due to the limited data at present and for the purpose of this IRP Update, these developments were not modelled as standalone scenarios, but considered to be covered in the low-demand scenario. The assumption was that the impact of these would be lower demand in relation to the median forecast demand projection."

[DoE, Draft IRP 2018, pp. 21 of 75]

In the Draft IRP 2018, it is clearly stated that the relative to the Median demand forecast, the Lower demand forecast is representative of a combination of:

- Embedded Generation (likely mostly solar PV)
- Energy efficiency (EE)
- Fuel switching

Growth of embedded generation (EG) market being implicitly included can then be calculated based on:

- Share of EG in the difference between Median and Lower demand forecasts
- Almost all EG will likely be solar PV (with associated capacity factor)
Between 1.1 - 5.8 GW of embedded generation (assumed to be PV dominated) is implicitly considered in the Draft IRP 2018 by 2030.

Sources: StatsSA; Draft IRP 2018; CSIR analysis
Formal comments on Draft IRP 2018

1 Executive Summary

2 Background

3 Draft IRP 2018 scenarios

4 Draft IRP 2018 employment impacts

5 Draft IRP 2018 energy planning risks
   5.1 Scenarios
   5.2 Descriptive comments
      a Technology new-build limits
      b New-build and under-construction coal capacity
      c Natural gas
      d Planning for embedded generation
      e Demand profile

6 System services and technical considerations
Demand profile is assumed unchanged in Draft IRP 2018 – updated approaches to demand profile will need to be pursued in future

Demand profile will change as constituent components of the demand forecast change

Not just purely an energy demand forecast and fitted peak load (assuming similar demand profile)

Updated approaches will be required linking with EG to ensure sufficiently accurate capacity expansion
Change in demand profile will result in very different capacity expansion options
Formal comments on Draft IRP 2018

1 Executive Summary

2 Background

3 Draft IRP 2018 scenarios

4 Draft IRP 2018 employment impacts

5 Draft IRP 2018 energy planning risks

6 System services and technical considerations
   6.1 Networks
   6.2 System services
Formal comments on Draft IRP 2018

1 Executive Summary
2 Background
3 Draft IRP 2018 scenarios
4 Draft IRP 2018 employment impacts
5 Draft IRP 2018 energy planning risks
6 System services and technical considerations

6.1 Networks

6.2 System services
Good to include shallow grid connection costs explicitly in Draft IRP 2018 based on extensive grid planning experience at Eskom

Draft IRP 2018 includes collector network costs in the various Eskom Customer Load Networks (CLNs) as well as shallow grid connection costs for VRE (solar PV and wind) and all other technologies

This is a welcome inclusion and is a good starting point to start to incorporate technology specific network costs previously not considered

Good objectives:

- Avoid premature congestion at Eskom Main Transmission Substations (MTSs)
- Minimising absolute number of MTSs
- Connect more smaller VRE plants in a specific area
- Allow more orderly network development and increased utilisation i.e. more efficient integration

Network costs based on unitised costing of individual equipment

Transmission substations, Satellite stations, Transformers, Transmission/Distribution bays, Overhead lines, Static VAr Compensators (SVCs)
Deep network costs are not included in Irp but covered as part of periodic and well established TDP and SGP developed by Eskom

Deep network costs (backbone strengthening) not included in Draft IRP 2018 (or any previous IRP iteration) but instead established based on periodic TDPs and SGPs developed by Eskom Grid Planning.

What is most important is how these deep network costs change on a relative basis across scenarios.

Generally, these costs do not change significantly across scenarios and thus would not materially impact least-cost outcomes.

In future iterations of the IRP, there should be a continued pursuit to include geospatial components of supply, networks and demand side options (co-optimisation) where feasible and tractable.

TDP – Transmission Development Plan; SGP – Strategic Grid Plan
6.2 System services

   a RoCoF and frequency stability
Formal comments on Draft IRP 2018

1 Executive Summary
2 Background
3 Draft IRP 2018 scenarios
4 Draft IRP 2018 employment impacts
5 Draft IRP 2018 energy planning risks
6 System services and technical considerations
   6.1 Networks
   6.2 System services
       a RoCoF and frequency stability
System services and ensuring security of supply to enable any range of future energy mixes

System services and security of supply

Frequency stability/control (system inertia and RoCoF) – *particular focus in these comments*

Transient stability and fault level (system strength)

Voltage and reactive power control

Variable resource forecasting

*All of these should inform a programme of research and effort required by all key stakeholders to ensure any future energy mix is secure*
System operators are managing high non-synchronous penetration – Ireland SNSP limits and services to manage low inertia power systems

\[ \text{SNSP [\%]} = \frac{\text{System Non-Synchronous Penetration}}{\text{Wind/PV + Imports}} \] \[\frac{\text{Demand + Exports}}{\text{(Wind/PV + Imports)/(Demand + Exports)}}\]
Averaging window is important – for frequency stability typically a 500 ms averaging window for RoCoF is considered.

The RoCoF should not exceed a particular threshold within the pre-defined averaging window e.g. 500 ms.
The demand for system inertia is driven by two assumptions: the maximum allowable RoCoF & the largest assumed system contingency

**Key assumptions:**
- Maximum allowed $RoCoF$: 0.5 Hz/s
- Largest contingency ($P_{cont}$): 2,400 MW
- Kinetic energy lost in contingency event $E_{kin(cont.)}$: 5,000 MWs

\[
E_{kin.(min)} = P_{cont} \cdot \frac{f_n}{2(RoCoF)} + E_{kin(cont.)}
\]

Term “inertia” is used a bit loosely to describe the amount of kinetic energy that is stored in the rotating masses of all synchronously connected power generators (and loads to be precise)

\[f_n = \text{System frequency} = 50 \text{ Hz}\]

**Demand for inertia**

124,800 MW.s of system inertia are required at any given point in time in order for RoCoF to stay below 0.5 Hz/s in the first 500 ms after the largest system contingency occurred

Sources: P. Kundur, Power System Stability and Control, 1994
As a starting point – we have assessed system inertia on an hourly basis via UCED in PLEXOS and some high level assumptions. Depending on what mix of power stations is operational at any given point in time, the total actual system inertia will be different.

For example, if 20 GW of old coal, 10 GW of new coal and 2 GW of nuclear are online, system inertia is:

\[
\approx 20 \text{ GW} \times 4 \text{ MWs/MVA} + 10 \text{ GW} \times 2 \text{ MWs/MVA} + 2 \text{ GW} \times 5 \text{ MWs/MVA}
\]

\[
= 110,000 \text{ MWs}
\]

If wind, PV and 5 GW of CCGTs are online, system inertia is only 47,000 MW.s

---

**Technology** | **Inertia constant [MWs/MVA]**
--- | ---
Coal (old) | 4.0
Coal (new) | 2.0
OCGT/ICE | 6.0
CCGT/CC-GE | 6.0
Biomass | 2.0
Hydro/PS | 3.0
Imports | 0.0
Nuclear | 5.0
Wind | 0.0
PV | 0.0
CSP | 2.0
DR | 0.0

Sources: P. Kundur, Power System Stability and Control, 1994
SNSP levels in IRP1 of Draft IRP 2018 only above 25% from 2028 and 37% by 2030 for 10% of the time but above 80% by 2050.
System synchronous energy for IRP1 – confirmation that the power system really does only start to change until after 2030
Minimal cost of ensuring acceptable RoCoF levels even at very high non-synchronous generation penetration levels

<table>
<thead>
<tr>
<th></th>
<th>2016</th>
<th>2020</th>
<th>2025</th>
<th>2028</th>
<th>2030</th>
<th>2040</th>
<th>2050</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum inertia needed</td>
<td>[MW.s]</td>
<td>104 482</td>
<td>104 482</td>
<td>104 482</td>
<td>104 482</td>
<td>104 482</td>
<td>104 482</td>
</tr>
<tr>
<td>Minimum inertia (actual)</td>
<td>[MW.s]</td>
<td>104 482</td>
<td>116 485</td>
<td>116 609</td>
<td>122 260</td>
<td>104 992</td>
<td>55 832</td>
</tr>
<tr>
<td>Additional inertia needed</td>
<td>[MW.s]</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>48 650</td>
</tr>
<tr>
<td>Number of hours</td>
<td>[hrs]</td>
<td>24</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1 799</td>
</tr>
<tr>
<td>Share of hours</td>
<td>[%]</td>
<td>0.3%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>20.5%</td>
</tr>
<tr>
<td>Rotating stabilisers needed</td>
<td>[MW]</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1 220</td>
</tr>
<tr>
<td>Annual cost for rotating stabilisers [bR/yr]</td>
<td>3.7</td>
<td>5.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(% of system costs)</td>
<td>[%]</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.9%</td>
</tr>
</tbody>
</table>

The worst-case cost to ensure RoCoF levels are acceptable post-2030 is at most ≈1% of total system costs
Thank you